
byte short int long float double

char int

ArrayList extends List ArrayList <: List

List<Integer> list = new ArrayList<>();

list List

list ArrayList

Integer i = 0;

Object o = (Number) i;

// i is of run time type Integer

// i is of compile time type Integer

// o is of run time type Integer (because pointing to the object I)

// o is of compile time type Object

Polymorphism
One thing many forms.

Composition
composing complex types

Wrapper Classes

Slower than primitives.
Immutable.

Double pi = 3.14; (auto boxing)

Final Keyword

Variable → cannot be re-assigned (can be initialised only once)
Method → cannot be overridden by child classes
Class → cannot be extended (inherited)

Dynamic Binding

Only for instance methods

Most specific method will be called. M is more specific than N if arguments to M can be passed to N without
compilation errors.
Compile-time return type is used to make sure that the required method exists. (decide method descriptor with
compile type)
Run-time type of target (a.method()) and compile-time type of arguments are used to determine method.
Searched up the class hierarchy. (step 2

instanceof matches run-time type.

int i = 10000;

Integer x = i;

Integer y = i;

x == y; // may be true or false (depends on if x and y are cached)

interface I1 {

 void bar(X x);

 void bar(I1 i);

}

interface I2 {

 void bar(Y y);

}

class X implements I1 {}

class Y extends X implements I1, I2 {}

bar(X x) in X prints 1

bar(I1 i) in X prints 2

bar(X x) in Y prints 3

bar(I1 i) in Y prints 4

bar(Y y) in Y prints 5

X x = new X();

X xy = new Y();

Y y = new Y();

I1 i = new Y();

i.bar(y); // 3

x.bar(y); // 1

y.bar(xy); // 3

x.bar(x); // 1

Liskov Substitution Principle (LSP)

"Let be a property provable about objects of type . Then should be true for objects of type
where ".
Any code written for would still work if is substituted for .

Abstract Classes

Cannot be instantiated.
Should contain at least 1 abstract method.

Interface

An interface models what an entity can do, with a name usually ending with the -able suffix.

All methods are public abstract by default.
Interfaces can have static fields (as constants).

An interface can extend from one or more interfaces, but not from a class.

Method Overloading

Overload by defining another method of the same name but different method signature.
Method descriptor = return type + method signature.
Overloading requires changing the order, number and/or type of arguments. (not name)

Method signature

method name
number of arguments
type of arguments
order of arguments

Cannot override private/static methods

Exceptions

try catch finally keywords.
throws throw
throw new SomeException("Optional Message");

Unchecked Exceptions
iff subclass of RuntimeException
Something wrong with the program and might cause run-time errors.

@SuppressWarnings("unchecked") (no semicolon)

Do not require to be handled.

Checked Exceptions
Exceptions that a programmer has no control over. For example, FileNotFoundException.
Must be handled otherwise will not compile (must catch or throws). i.e. programmer has to foresee these
exceptions.

Errors
OutOfMemoryError or StackOverflowError
Don't need to handle.

i is of compile time type I1 thus only has access to methods in I1 but has run time type of Y, thus uses those methods

in Y. Since y's compile time type is Y, and Y is subtype of X and I1, but priority given to class.

A method overriding a method that throws an exception, does not need to throw an exception (or handle it).

Variance

covariant if
contravariant if
invariant if neither covariant nor contravariant

Arrays are covariant.
Generics are invariant.

a.compareTo(b) ⇒ a - b

Type Erasure

Generics (complex type) enable type safety by allowing the developer to not resort to using Object.

Generics are erased during compilation.

Unbounded types are replace with Object.
Bounded types are replaced with its bound.

Arrays and generics do not mix (causes heap pollution).

Arrays are reifiable type -- a type where full type information is available during run-time BUT generics are not.

Raw Types

DON'T USE → use <?>
Generic type used without type arguments.
Compiler cannot do any type checking.

Wildcards

PECS
Producer Extends, Consumer Super.
If both producer and consumer, just T

Upper Bounded Wildcard

Covariant

? extends T
Matches classes that are child classes of T.
A<S> <: A<? extends S>

Lower Bounded Wildcard

Integer i = new Pair<String,Integer>("hello", 4).getSecond();

class A<T, S extends GetAreable> {

 T t;

 S s;

}

// transformed to

Integer i = (Integer) new Pair("hello", 4).getSecond();

class A {

 Object t;

 GetAreable s;

}

Contravariant

? super T
Matches classes that are super classes of T.
A<S> <: A<? super S>

Unbounded Wildcard

Array<?> will accept any type of Array<>. "Object" of the generic world.

For any type S:
A<S> <: A<?>
A<? super S> <: A<?>
A<? extends S> <: A<?>
A<Integer> <: A<? extends Number>
A<Integer> <: A<? extends Object>

Array<?> is an array of objects of some specific, but unknown type.
Array<Object> is an array of Object instances, with type checking by the compiler.
Array is an array of Object instances, without type checking.

a instanceof A<?>

Immutability

Making class immutable by making fields final.

Ease of understanding

Enabling safe sharing of objects

Example: ORIGIN Point, EMPTY_BOX Box
No problem of aliasing (reference types may share the same reference values)
use factory method instead of exposing constructor

Enabling safe sharing of internals

Enabling safe concurrent execution

can be used to represent same object at different stages

can "revert" objects to a previous state (Undo-able)

Nested Classes

Act like fields.
Used to group logically relevant classes together.
Tightly coupled with the container class and can declare as private if has no use outside of container class
Can access private fields of container class (thus should only be nested class if same encapsulation as
container class)

Nested class: Class inside a class
Local class: Class inside a method

public static <T extends GetAreable> T findLargest(Array<? extends T> array);

// @SafeVarargs ise used here because compiler would throw unchecked warning as generics and arrays do not mix well

@SafeVarargs

public static <T> ImmutableArray<T> of (T... items) {

 return new ImmutableArray(items, 0, items.length - 1);

}

Nested Non-Static Class

aka Inner Class

Cannot have static fields because they belong to an instance
UNLESS these static fields are constants known at compile time like int literals, string literals

Nested Static Class

Local and Anonymous Classes and Lambda

Classes inside a method. Scoped only inside the method.
Local classes cannot be declared public, protected, private.

Variable Capture

class A {

 private int x;

 static int y;

 class B {

 void foo() {

 this.x = 1; // error

 A.this.x = 1; // this is preferred

 y = 1; // accessing y from A is OK

 }

 }

 // the definition of static nested classes are stored in the metaspace

 static class C {

 void bar() {

 x = 1; // accessing x (instance field) from A is not OK since C is static

 y = 1; // accessing y (static field) is OK

 }

 }

}

// Comparator is a common use case for local classes

void sortNames(List<String> names) {

 class NameComparator implements Comparator<String> {

 public int compare(String s1, String s2) {

 return s1.length() - s2.length();

 }

 }

 names.sort(new NameComparator());

}

// anonymous class

names.sort(new Comparator<String>() {

 @Override

 public int compare(String s1, String s2) {

 return s1.length() - s2.length();

 }

});

// lambda

(x, y) -> x + y;

i -> i + 1;

Function<Integer, Integer> f = x -> {

 System.out.println("Test");

 return x;

};

f.apply();

Local variables (including primitives) referenced from an inner class must be final or effectively final (only
assigned once even though not declared final).
Note: this constraint does not apply to static variables!

Usually, when a method returns, all local variables of the method are removed from the stack. BUT an instance
of a local class can still exist. Thus, local classes make a copy of (captures) local variables inside itself (even if
unused as a failsafe). Hence, why these variables cannot be changed.

Lambda Closure
Value of origin is captured by the lambda expression dist, and hence has to be final or effectively final.

Pure Functions

Deterministic
No side effects → once stack frame is done, nothing except final result should be left

print to screen
write to file
throw exception

be careful of division by zero
FileNotFoundException

change other variables
modifying fields of reference type arguments passed to it

Referential transparency (no internal state) → always same output
violated by using instance fields that are not final

Memoization only makes sense when function is pure and deterministic

@FunctionalInterface annotation
An interface in Java with only one abstract method is called a functional interface.

Lambda expressions allow you (as the client) to "customise" some implementation into the Implementor's
methods (including modifying Implementor's internal states).

Streams

import java.util.stream.*;

CS2030S java.util.function

BooleanCondition<T>::test Predicate<T>::test

Producer<T>::produce Supplier<T>::get

Transformer<T,R>::transform Function<T,R>::apply

Transformer<T,T>::transform UnaryOp<T>::apply

Combiner<S,T,R>::combine BiFunction<S,T,R>::apply

Maybe<T> java.util.Optional<T>

Lazy<T> N/A

InfiniteList<T> java.util.stream.Stream<T>

Streams can only be operated once once. Attempting to iterate through a stream more than once throws a
IllegalStateException.
Java also has IntStream, LongStream, ... that contains primitive values instead of wrapper classes

Point origin = new Point(0,0);

Transformer<Point, Double> dist = p -> origin.distanceTo(p);

Transformer<Point, Double> dist = origin::distanceTo;

// above 2 are equivalent

Stream.iterate(0, x -> x + 1) generates an infinite list of sorted non-negative numbers.
range(x, y) x is inclusive, y is exclusive
rangeClosed(x, y) both x and y are inclusive
List::stream() constructs a stream based on the values in a List.

Terminal Operations
forEach, reduce, count() (returns long) etc

Intermediate Stream Operations → lazy
map, filter, flatMap etc

Stateful and Bounded Operations (need to maintain some internal state)
sorted (can pass in Comparator), distinct

Truncation of Infinite Streams
limit, takeWhile (might still be infinite if predicate always true)

Peeking with Consumer
peek

Reducing
reduce(init, (acc, x) -> ...)

reduce(T identitiy, BinaryOperator<T> accumulator)

reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator<U> combiner)

Element Matching
noneMatch, allMatch, anyMatch (terminal)

Functor and Monad

Need to explain why the laws hold.
For flatMap, be careful of side information stored in both original Monad and Monad returned from the mapper
(both should be retained, in the correct order).

Monad

These are examples of monads: Maybe<T>, Lazy<T>, Loggable<T>, Stream<T>, CompletableFuture
Must have of and flatMap methods.

Identity Law

Factory method should not do anything extra to the value and side information.

Left identity law says:
Monad.of(x).flatMap(y -> f(y)) must be equivalent to f(x)

Right identity law says:
monad.flatMap(x -> Monad.of(x)) must be equivalent to monad

Associative Law

monad.flatMap(x -> f(x)).flatMap(y -> g(y)) must be the same as monad.flatMap(x -> f(x).flatMap(y ->
g(y)))
NOTE The location of the closing brackets)

Functor

Functors is similar to monad but only ensures that lambdas can be applied sequentially to the value, without
care about side information.
Must have map method.

Preserving Identity

functor.map(x -> x) must be the same as functor

Preserving Composition

functor.map(x -> f(x)).map(x -> g(x)) must be the same as functor.map(x -> g(f(x)))

Parallel and Concurrent Programming

Divide the computation into subtasks called threads.

Multi-thread programs are useful

 allow programmers to separate unrelated tasks into threads, and write each thread separately
 improves utilisation of the processor, e.g. I/O and UI is split up

Parallel NOT always faster than non-parallel due to overhead with creating threads.

Concurrency

Concurrency gives the illusion of subtasks running at the same time.

Parallelism

Parallel computing refers to when multiple subtasks are actually running at the same time.

Parallel Streams

parallel is a lazy intermediate operation.
sequential will force the stream to be processed sequentially instead.
Note that if multiple parallel and sequential are used on the last stream, the last one used will override.
parallelStream() instead of stream() also exists to be used on a collection.

What can be parallelised?

 Stream operations must not interfere with the stream data
 Most of the time must be stateless (like stdin)
 Side-effects should be kept to the minimum

Interference will cause ConcurrentModificationException to be thrown.

CopyOnWriteArrayList and several other thread-safe data structures in java.util.concurrent.

Associativity while Reducing

reduce operation is parallelisable but have to abide by some rules:
reduce(identity, accumulator)
reduce(identity, accumulator, combiner)

Accumulator: First parameter is the accumulated value, second parameter is the current value of the stream.
Combiner: Used to combine the results of all the parallel sub-streams.

 combiner.apply(identity, i) must be the same as i
 combiner and accumulator must be associative

Parameters for the combiner and accumulator must be able to be swapped.
Order of reduction should not matter

 combiner and accumulator must be compatible

combiner.apply(u, accumulator.apply(identity, t)) must be equal to accumulator.apply(u, t)

Multiplication is a valid operation that abides by these 3 rules.

Ordered vs Unordered Source

Streams created from iterate and ordered collections (List, arrays) are ordered
Streams created from generate and unordered collections (Set) are unordered

Stable Operations
Stable operations preserve the original ordering of the elements.

distinct, sorted

Parallel versions of findFirst, limit, skip can be expensive on an ordered stream, since it needs to coordinate
between streams to maintain order.

Synchronous Programming

Execution of program is stalled until a method returns. The method is blocking the execution of the program.

Threads

java.util.Thread is a single flow of execution in the program

new Thread(...) takes in a Runnable, a functional interface with a method void run() Thread::start() then
starts the execution of the program in another thread.
NOTE Creating new threads causes overhead. Thus, should try and re-use threads as much as possible.

CompletableFuture

CF.completedFuture

Returned CF completes when given lambda expression finishes
runAsync(Runnable runnable)

supplyAsync(Supplier<T> runnable)

NOTE Java program may terminate before the Runnable is completed!
CF.allOf(...), CF.anyOf(...) takes in variable number of CF instances
runAfterBoth(CF other, Runnable r), runAfterEither(CF other, Runnable r)
Chaining CF

thenApply (map), thenCompose (flatMap), thenCombine (combine)
thenRun(Runnable r), thenAccept(Consumer c)

Getting result (blocks program execution)
get() throws InterrupedException (thread has been interrupted) and ExecutionException
(errors/exceptions during execution)
join(), similar to get() but does not throw checked exceptions

Handling exceptions
handle(BiFunction<Value, Exception> f) value will be null if got exception and vice versa
exceptionally only handles exceptions (no result)
whenComplete used for logging information

Thread Pool

Thread pool lets us reuse threads and therefore reduces the overhead of creating new threads.

ForkJoinPool is an implementation of a thread pool. Forks the problem into smaller problems and then joins
them.
Fork and join must be used in tandem.

Recursive Task

Abstract class RecursiveTask<T> supports fork() and join() and has an abstract method compute() which we
will use to specify the computation.

RecursiveAction is a result-less version of Recursive Task.

class Summer extends RecursiveTask<Integer> {

 private static final int FORK_THRESHOLD = 2;

 private int low;

 private int high;

 private int[] array;

1.fork(), 2.compute(), 1.join() is the most optimal
compute() is likely faster than fork() then join() because it reduces the overhead of having to interact with the
ForkJoinPool

ForkJoinPool

 Each thread has a deque of tasks
 When a thread is idle, it checks its queue of tasks.

 If queue is not empty, it picks up a task at the head of the queue to execute (invokes its compute()
method)

 Otherwise, it picks up a task from the tail of the queue of another thread to run. This is known as work
stealing. Picking up from the tail to minimise conflicts.

 When fork() is called, the caller adds itself to the head of the queue of the executing thread. This is
similar to recursion stack.

 When join() is called, several different cases
 If the subtask to be joined hasn't been executed, its compute() method is called and the subtask is

executed.
 If the subtask to be joined has been completed (other thread stole it), then the result is read and done.
 If the subtask to be joined has been stolen and is still being executed, current thread works on another

task (in local queue or steals another task)

The threads are always looking for something to do and cooperate to maximise work done! Minimise the time
each thread is spent idling.

Misc

new A().foo() is valid even when foo is a static method

 public Summer(int low, int high, int[] array) {

 this.low = low;

 this.high = high;

 this.array = array;

 }

 @Override

 protected Integer compute() {

 // stop splitting into subtask if array is already small.

 if (high - low < FORK_THRESHOLD) {

 int sum = 0;

 for (int i = low; i < high; i++) {

 sum += array[i];

 }

 return sum;

 }

 int middle = (low + high) / 2;

 Summer left = new Summer(low, middle, array);

 Summer right = new Summer(middle, high, array);

 // !!

 // many ways to do next 2 lines

 // but using 1.fork(), 2.compute(), 1.join() is the best way

 left.fork();

 return right.compute() + left.join();

 }

 }

 Summer task = new Summer(0, array.length, array);

 int sum = task.compute();

Meta space :

- static fields

- other meta information about classes

stack frame :

- parameters
- local variable (including reference types → points to heap)

- lambda & anon. class (local var that point to class on heap)

class A {
Heap : int x ;

- reference types (instances) Object too / int param) {
double local = 1.0 ;

Variable capture : class B {
- only captured if used by local class

- must be final /effectively final

- can capture reference types through pointer @ Override can access stuff from too & A

-
t change pointer string to string) { ↓

- but can change value in reference type return
" "

t
y +

local + param

} + A. this . × ;

F.}
qualified this

✓ fÉÉ) it in

B b = new Bt) ;
I . foo : capture variable

" "

A* return b ;
2 . A : capture

"

A. this
' '

(always captured }
+ : no cost)

main I ' ' ') {

µ
A a = new All ;

Object o = a. fool 4) ;
args①

a. to string ') ;

}

off

qualified
"

this
"

captured ⇔ it is a non-s-tt.ie nested class

