
Powers of 2|JinWeiNt[
10 9 8 7 6 5 4 3 2 I 0 -1 -2 -3 -4 -5 -6

1024 512 256 128 64 32 16 8 4 2 I 0.5 0.25 0.125 0.0625 0.3125 0.015625

Von Neumann Architecture

- stores program & data in memory b^b=O
for swappingB^D = b

a
"

/b' b) = any =
a) int

|cprogramm)
32 → (321,0

÷::::| "
"

float : 4 bytes (PU .
(int) float 032 → (32)g ← MIPS no octal input
→ truncates

0×32 → (32716

char : always 1 byte
8 bits = 1 byte

Variable has :

- name

- data type Everything in C is

- value pass-by-valuenot-referer.ee
-
address

address

scarf / " string
"

,
✗

, ,× , , .
. .) %c char

print f(
"

string
") %d int

printf (
"

string
"

,
× , / ✗ 2 ,

. . .) %f float /double uses %f for output)

puts (Str) H w/ new line %lf double (for input)

%p address ← different execution
, different address

%zu size -

t.BA#-decimaTlhE--xz3+
1×2>+0×2' + 1×20 + 1×2

"
+ 0×2-1 + 1×2

"

3 2 I 0 - I -2 - }

|DecimaltoBaseT_
Whole numbers : repeated division by R Fractional portion : repeated multiplication

→ division - : R
"
→ R

" "
→ multiplication ; R

' - "
← R
"

take this

*
2 43

2 21 rem I
←
"B 0.3125 × 2 = 0.625 ← MSB

0 .
625 × 2 = 1 . 25 0.3125 = (0.0101)z

z 10 rem I
43 = (101011)z

0
.
25 × 2 = 0.5

2 5 rem 0

0.5 ✗ 2 = I ← LSB
2 2 rem I W

repeat til
0

2 1 rem 0

(might
not terminate

0 rem I ←
MSB but will have pattern)

← repeat til 0

R1 → R2 I R1 → decimal → R2

but if R1
"
= R2

→ partition into groups of n

(10 111 011 001 .
101 110)

,
= (2731.56)g

2 7 3 I 5 6

n ← . → n

Sign- extension Max int is 23 ' - I
↳ pad with MSB

= 2147483647ffixed-poir.tl?epresentation--
Zero - extension for 2's complement

- fixed number of bits for integer & fractional components ↳ pad with 0s

lsignandmagnitude-M-tsn.EE
sign
◦ → + ve A- B = A + C- B)
I → - ve

range :[-12
""

- 1)
,
2
""
- I]

negation : flip sign bit

|I'scompIemen_ : diminished radix complement

- ✗ = in - ✗ - I ✗ = r
"
- i¥↑ - ✗

I. Binary addition on at b
fractional

MSB is sign bit → 2 . If MSB carry out,
add 1 to result

range :[-12
""
- 1)
,
2
" "

- I] 3 . Check overflow .

I 101

negation : flip all bits e.g. FFFF
-0001 : FFFE 0verflowifMSBI-→↑,#-

|2'scomp÷e : radix complement e.g. 10000 - 0001 = FFFF

- ✗ = 2
"
- ✗ I. Binary addition on at b

MSB is sign bit
no d"P""

" °

→ 2. Ignore MSB carry out

range
: [-2

" '

,
2
""
- I] 3 . Check overflow .

negation : flip aI bits , -11 to LSB (incl . fractional)

all 0s is a
" denormal form

" that represents 0 .

|FbatsIEEE754- normalised w/ implicit leading bit
→ cannot be represented precisely otherwise

t.IT/expone-nTf/mantissI&Padw/
↳ to the right

↳
deft : fractional

single - precision 132 -bits) "M""
"

I . Convert 1ft to binary Multiply : I . Multiply mantissa
- 1-bit → repeated m" ' / div

2 .
Add exponents

- 8. bit → excess -12T

2 . Normalise to ± 1. mantissa ✗ 2
"""
"

- 23-bit 3. Normalise

double - precision
3 . Sign : 0/1 for tve /- ve

- I - bit 4. Merge Addition : I . Equalise exponents
- ll - bit → excess -1023

2. Add new mantissa
- 52 -bit

3. Normalise

|EN on M bits Excess -4 Value

start at -N 000 -4

(1)
binary

+ N = ('1)
Excess - N

001 -3

010 -2

→ easy to compare values 011 - I

100 0

101 I

110 2

111 3

|Sf÷g\←
size = string length + 1*4. .|Poin⇒- → tt and - - based on sized (type)

ends with
"

10
'

→ ascii of 0 .

pointers
int a = 123 ; f I
& a → addr of a void swap (int * a , int

* b)
char strc] =

"
abc
"

; I char Str [] :{ ' a'
,

'

b
'

,

'

c

'

,
Yo

' }
int * a- ptr = &a ;

Stalin
*
a
- ptr = 123 = a

f-gets / str , size , file) scant /"%s" , Str)

|Array⇒ : homogeneous collection of data reads up to size OR newline - until whitespace
-

- contiguous in memory ↳ /e|aT
←

values. length > size ⇒ warning ⑦
should change to 10

int ✗ [4) = { I} ; → ✗ [D= I

✗ [I] :O lcstring.LT
:

✗ [3) = , } defaut
value

✗ = &x[o) 1 . stolen (s)

arr [i] =
* (arr t i) → no , of char

arr 2 = arr 1 ; ✗ CANNOT do assignment 2. stump (s1 , S2)

→ sl lexicographical comparison

3 . strncmp (s1
,
S2
,
n)/Structures

- → up to
10 or n

- can be nested

- allows heterogeneous
members

- allows assignment (unlike array
4. strcpylsi.su
5. strncpy 1st, S2,

n)

typedef struct { void tune (box -t box){ . "}
int a,b ; tunc (& box) ;
float f ; ☒

} box - t ; use address to use
"

reference
"

.

box - t box = { 0,1 , 0.3} ; (* box - ptr) .

b = box - ptv → b
box .f ; → 0.3 f-A

dot arrow

ImT |R-format⇒
add $ so

,
$-11
,
$-12 I $sO = $-11 + $-12 lnTE7_i÷T

immediate : [-215,2" - 1) ← 16 - bit 2 's complement 6 5 5 5 5 6

☒
zero - extension add $rd

,
sirs
,
$rt

for large constants (> 16 bits) set /srl $rd
,
Art
,
shamt ← $rs=0

lui $-10
,
AAAAA

or ; $-10
, $-10,0✗BBBB # $-10=0 ✗AAAABBBB |I-format)-

sign - extended except andi
,
ori
,
✗Ori

dest

lw $-10 , 41$50) sw,eb,sb |0Py0DTrs#¥FÉ±
(deft F ttaddress ↳

offset don't need to be multiple of 4 .
offset
(multiple of 4 , can be 0) beqlbne $rs

,
$rt
,
immd → up to -1-2

"-

bytes
①
$-10 = mem [$ so + 4) addi $rt, sirs ,

immd it jump : Pc = PC +4 + (immd ✗ 4)

lw $rt
,
immdlsrs) ① beg .

. . ,end①
do

②
beg di

bne } $rl , $r2 , label ← relative ③
④ end : hi

C) 2

j Label
c- absolute

|J-forma
set $-10

, $sO,$sI if $so<$sl
,

$-10 = I |0PcoD/
else

$-10 :O F b 26

(2) to = (000010)z 256m13 boundaryAmdahl 's Law

→ make frequently used instructions FAST ! 2
"
- l - (instructions between)

/ if at ④AFFFFFFE boundary
,

fIÉÉtÉIAT
←

✗GK32 1IA }y
cannot use j .

① Complex instruction set computer ((Isc)
- IF-ndio.IT

② Reduced instruction set computer (RISC)
g- BigEndi littlef.n-d.am

MIPS
,
ARM

→ MSB in lowest address → LSB in lowest address

lstoragehnhitectu.rs#- ☐ ✗ DEAD BEEF ☐ ✗ DEAD BEEF

① stack

1) I:-&. I BE② Accumulator

, ± ,

I /- one operand implicitly on accumulator
3 DE

③ General purpose ←
largest opcode

- register -memory Max : 2M -2A + I

- register
- register (MIPS) for a

,
< a
,
c. . . can

, Jeff
④ Memory - memory min : 29 '

+ ,É
,

"

£"" - %) - n + I 5 5

A_TF
2
" -25+1-

go through BUS (slow) - ax)
6 5 5

- small instruction set
BEH = 2017¢

IT-nstrnctionleng.TT
- Processor

memory
Variable is Fixed us Hybrid (a variable)

""""""""

""

→ operands
K - bit address

* up y, 2
,

→ """" " "" µ addressable

work w/ most constrained instruction type .

locations
7
most operands tdataB

Data ~,
control lines

lcontrolIDatapo.TT/- DC read during first half of clock period
& updated at rising clock edgeI. Fetch

- get instruction from memory

- get address from PC register

2. Decode
- find which operation

3. Operand fetch
- get operands needed for operation

4. Execute

5. Write back
- store results in register

|RegD① RegDst Alusrc MemToReg Regwrite MenRead Memwrite Branch Aluop
-

R- type I 0 O l o O o to

0 : write register = inst [20:16] ← I - type
lw 0 1 I 1 I 0 0 00

1 : Write register =
inst [is : 11] ← R - type

SW ✗ I ✗ O O I 0 00

|RegWrT beq ✗ 0 ✗ o o o I 01

0 : no register write

1 : write to register

/Alu⇒
0 : Operand 2 = RD2

1 : Operand 2
= SignExt (inst [is :D) ← lw / sw

IMemR_→
0 : no memory read

1 : memory read using Address (ALU result)

lmemw-ri.TL
0 : no memory

write

1 : mem [Address] ← write data (RD2)

|MemToReg)
*-

l : WD = memory read data

0 : WD = ALU result

|PCSrc/Bran⇒- ← pcsrc = Branch + is Zero

0 : next pl = PL +4

I & is Zero : PC -14 + Sign F- ✗ + (inst [15:o)) << 2

/Alu→
0000 AND

0001 OR

0010 ADD

0110 SUB → A - B = A- + C- B)

0 I11 5LT = At NB +

1µg
,

I 100 NOR

it
D-invert Binvert

1A invert
•

→t#ÉA- resultB-bÉH
Binvert It is undefined

-

Identity

/

Duality
A- +0 = 0 + A = A A. I = 1. A =-D ✗ + I =/ ⇐> a -0=0

inverts

At A
'
= A' + A = I A. A

'

= A
'

. A :O
+ and .

T
Commutative

At B = B + A A. B = B- A

Associative

Ht (Bt c) = (A- + B) + l A. (B. c) = (f) • B) ' C

Distributive

A. (B + c) = (A. B) + (A. c) At (B. c) = (At B) . (At c)
Idempotency

✗ + ✗ = ✗ ✗ - ✗ = ✗

One element /Zero element

✗ + I =/ + ✗ : I ✗ -0 = 0.x :O

Involution

A)
'

= ✗

Absorption I

✗ + ✗ ' Y :X ✗ . (✗ + 'f) = ✗

Absorption 2

✗ + ✗
'
- Y = ✗ + Y ✗ - (✗

'

+ 4) = ✗ Y

De Morgan → generali sable to > 2 variables

(✗ + 4)
'

= ✗
'
- Y

'

(✗ 1)
'

= ✗
'

+ Y
'

Consensus

✗ ' Y + ✗
'
- 2- + 4. 2- = ✗ ' Y + ✗

'

- 2- (✗ + 4) . /✗
'

+ 2) . / ✗ + 2) = (✗ + Y) . / ✗
'

+ z)
- -

must have all n literals

Min term of n variables : y y Minterms Max -terms

Ma, term of n Variables : X
, -1112 -1 . . . + ✗ n o o y

'
-

y
'

mo ✗ + y Mo

'

up to 2
"

possibilities 0 I ×
'
- y mi " + y

'

M1

My = (MH)
"

, y ✗
' y

'

mz ✗
'

+ Y M2

don't compress 1 1 31 - y M3 ✗
'

+ y
'

M3
-

surfofminterms = canonical sum of products (sop)

product of maxterms = canonical product of sums (Pos)

F = M1-1MZ = Em / 1,2) = { m(I - 2)

G- = Mo + M4 = TIM 10,4)

Em and TIM can convert with De Morgan 's

|Logiilircu
-

A B AND OR ✗OR NAND NOR ✗NOR

O O O O O I 1 I

0 I 0 I 1 I 0 0

I 0 0 I 1 I 0 0

=jD- Negative - OR , I 1 I o o o
'

⇒D- Negative - AND

✗NOR a ⇒Do- a ob
fan - in : number of inputs of a gate

≤ ≤D-a-
(equivalent gate) b

* assume complemented literals

Ñt) don't exist unless stated for 02100

complete sets of logic :{ AND, OR , NOT} , {NAND} , {NOR} , { AND , NOT} ,
{ OR / Not}

,
. . .

Others still useful (a lot)

- ✗OR : parity bit generation
- economical (save on gates)

ITE INI

✗-E- ×
' ✗ -ED- i

✗→o- ×
'

z

s-EDa.ci#-ti+H'=n.y;--Do-lx.YI-E/)o-x.y
"
-ED" "

'

75.1].- fi . ;)
'

= ✗ + y j-Y-Do-lx.is)
' -[D◦- " + Y

y -[- y
'

SOP can easily be implemented with : P0S can easily be implemented with :

1) 2 - level AND - OR circuit 1) 2 - level OR - AND circuit

2) 2- level NAND circuit 2) 2- level NOR circuit

↑ ↑
inventor not considered inventor not considered

e. g. F = A - B + C
'

- D + E

AND -OR to NAND

I. =D-1
A

-17-1 I :D>B-

I
A- F →

§
'= →

;±⇒D◦FE)
E Do E Do

Programming language Array (PLA) Read Only Memory (ROM)

-Similar to PLA

input -=& - fully decoded : able to implement any mappings

☒≤ output

- may
not be able to implement

every mapping

/Simplification |Hatd
✗ Y c s

- minimise literals
O O O O

- minimise terms used

_fÉf
-
s

(✗ + Y) 0 I 0 I

Ad_der- c
I 0 0 I

1 I 1 0

binary
aka reflected binary code ☒ [= ✗ • Y = M3

- unweighted (opposite of arithmetic code) g = ✗ i. y + × . Y = MI + M2 ;¥*→loops
0)- only I - bit change (Max → = ✗ ④ Y

back

- good for error detection ED- c

- n bits → 2
" values

ftp.ndard-4-bit gray
code

many possible implementations

|Karnaugh-_Ma
- each square represents a minterm

-2
"

cells

- 2 adjacent squares ⇒ differ by one literal

- wraparound exists

in
- h - variable ⇒ n neighbours

•F ≤

,
. . . .

"" " "" "" """"
" " "⇔.

W✗Z 00 01 11 10

in * 00 01 11 10

y = b
' ☐ °

O ' 3 2

J 000 001 011 010
I = b mʰ ° ' 3 2

° ' " 5 7 ° } ×210
It

≤
I
100 101 I / I 110

4 5 7 °
4 5 7 °

W { / I
' 2 '3 ' 5 ""

2- variable 10 8 9 11 to

3- variable
z~ᵈ

4-variable

6- variable

5- variable

IG-roupingsink-mo.PT |Don4ca-
based on A + A' =/ (Unifying Theorem) - denote with ✗ or d

I. group as many as possible - use Ed or T1D

→ PI

→ results in less terms
→ include in PI /EPI only if

2. ignore redundant groups the PI/EPI contains 1
.

→ for EPI

* remember wraparounds

implant : product term
that can be used to

cover minterms of the function

finding SOP

EPI : PI that includes ≥ I mintermnotcorered → all EPIS + remaining PIS
not covered by any EPIS

by any other PI .

→ does NOT need to cover all Is

/Quine.mil/uskey)
-

- similar to K - map but not limited to v6 variables

steps :

1. list out all minterms in groups with same number
of Is

2. combine codes that differ by 1 bit into bigger group, write combined with
"
-

"

3. Repeat step 2 and continue combining

Identify Ep -1s (columns containing single tick)

Eliminate EPI vows

Answer : EPI , t remaining ticks

fcombinationalcircu.it/-
Each output depends entirely on the immediate inputs IGate-leveldesigT-FBT-leve-D.gr/
→ like mathematical functions

- with logic gates - with functional blocks

→ no internal state OR , AND, NOT,
✗ OR
,
. . .

- using simpler blocks to

build complex blocks
- analyse w/ K - map or

To analyse : truth table to get SOP - find common patterns

I. Label inputs/outputs
after gates/blocks (& simplify) to build circuit & intermediate states

2. Obtain functions of intermediate points & outputs

3. Draw truth table - Reduce cost

4. Deduce /guess functionality
- Increase speed,☐e,gn,mp,,+yg,,,,fp,,,!

|CommonB)

if.ÉÉfs iii.
"

Iii
" " " "

- c
2- -

É+z (
5

4-bit parallel adder ←
(
i

s -

- ✗ 0+140+2-1

[= ✗ - Y + (✗ ④ Y) - 2-

sy ¥ ¥ ¥

;⇒D1÷D""s gate - level too complicated to analyse

→ 2
"

possible inputs
(✗ ☒Y) - 2-zE¥EÉD-"i """ "É""E

"

"Ht⇒;÷☒E¥ .I

iE ! s
.

!
'
=D- i

→ can build 8,16, . . .
bit adders

|ciriua
delay of this gate

÷. -17
↓

gate
- t + ma ' /to

,
-11

,
. . . ,tn)

tn -_

→ have to wait for all inputs to be stable

←
medium - scale integrations

- An integrated chip (Ic) is a set of electronics on one small flat piece / chip of semiconductor material .

- Scale of integration : # of components fitted on a standard IC chip

÷..

n :# of input bits 0 - enabled usually denoted with É or I
'

74138 (3 :S decoder)

m :# of possible outputs (m ≤ 2
"] ← usually , m=2

"

→ more commonly used in MSI decoders → very common

→ truth table just swap 0 & I
→ G-1=1

,
G- 217=0

,
G2B :O

→ input order matters (not always but sometimes)
to enable

2 :4 decoder
← only 1 high/low active - high /normal output) → active - low output

→ 1 if true
F- ✗ Y Fo F , F, F} f) active - low (negated output)
I 0 0 I 0 o o → 0 if true

I 0 I 0 I
o o

l I 0 0 ° I 0¥:*:÷÷: ::' ' ' ◦ ◦ ° '
can build In"" "

"

decoder with an:i decoders

0 d d O O O o

po w
-

1-enabled minterms ↑ §.
: can use to AND gates only
implement ✗ Y E (t 1 inventor)
sop functions

with OR gates use MSB

÷ easier¥:÷:::I _ F5
|m:nEd
→ converse of decoders

→ only I input bit is high

(or in the case of priority encoders
, highest priority is chosen)

↑
m :# of input bits (m ≤ 2

") (all 0 is invalid !)

n :# of outputs

8:3encoder-

F.
use truth table / binary

1 : 2h

IDe.mu/tip-exer)ordemux |Merging_mTf
→ take input & a set of selection lines 74151A 8- to - I mux

18
:/ mux

→ directs input to one of the output lines → o - enabled (strobe -_ enable)
v

→ identical circuit as decoder with enable → both active - high & active - low

2h :|

|MuHip) or mux or data selector

→ many inputs & a set of selection lines

→ chooses one of the inputs as output

output = I , - Mo + I
,
'm

,
+ . . . + In- t.mn,

→ use n : 2
" decoder & AND with the input bits (as above) → group by common

term in truth table

S
,
S
,
So Y

4 :/ mux

0 0 I I ,I ::
0 I 1 I }

I 0 0 I4

I 0 I I5{ , , , ±,

I 1
1 17

T
to implement { put 1 if it is a minterm of the function

SOP function else 0

IT & variables = select
selector lines

F. But we can do BETTER ! !

→ use 2
""
:| mux is sufficient

e.g. F1A,B,c)=Em(0,1/3,6)AB (D AB AC AD BC BD CD

0 0000 00 00 00 00 00 00 ABC F MUX

000 I
1 0001 00 00 01 00 01 01 1

00 I 1

2 0010 00 01 00 01 00 to g , go
I É¥fC

3 0011 00 01 01 01 01 11 group ? -yZµ^
byAB.u.in,§4 0100 01 00 00 10 10 00 I 0 00

f)
B

5 P0101 01 00 01 10 11 ° '

can use

"°
I 1 0 I

6 0110 01 01 00 11 10 10
any

, , , ☐

C
"

7 01 11 01 01 01 11 11 11

8 1000 10 10 to oo oo oo

9 1001 10 10 11 00 01 01

10 10 10 10 It 10 01 00 10

11 10 11 10 11 It 01 01 11

12 11 00 11 10 10 10 10 00

13 11 01 11 10 11 10 11 01

14 11 10 11 11 10 11 10 10

15 11 11 11 11 11 11 11 11

fsequentiallircu.it/-
→ has internal state / memory

←
1- bit data

memory element
: device that remembers a value indefinitely

,
or change value on command from inputs

Qlt) or Q : current state

Qlt -11) or at : next state

lclockl-O-squarewave-higny-y.PE?ijP""

pulse - triggered edge - triggered

low /o)#- - latches - flip-flops
ON :L

,
OFF :O - positive edge - triggered : ON -_ rising edge , off = other time

positive/rising negative/ falling - negative edge - triggered : ON __ falling edge , off = other time

edge edge

%Ee.li?-7orR-s
Characteristic Table

active-low-variantgDR-D.TOS R Q Q
'

S R Q
'

- use NAND or negative -or S R at

complementary 0 0 NC NC O O Q instead of NOR
g g N/A

f outputsg_-☐
0 I 0 I Latch SET 0 I 0

- sometimes
,

S and R 0 1 I

F- I 0 I 0 Latch RESET 1 0 I are labelled S
' and R

'

l o o

[use NOR gates
1 I o o Invalid input 1 I N1A ← breaks 1 I Q

need to
"

loop
"

circuit until stable circuit

→ Q+=StR' .Q
(E3 loops)

IGateds-R-o.TT c- gated = enable LEN) |GatedDT aka data latch

ST77;D- a - s DT77;D- a1- ! 1-
→& Ew E%* '

EN →nl-D.io#-oi-R-o-0inEN-/Ip.--*-.oi
(R - -Dal
1- enabled 1- enabled

→ avoids having invalid input

EN D Q
'

I 0 0 Reset

when IN :L
,
Qt =D

I 1 I set

0 ✗ Q No change
T
if non - gated , D latch pretty useless

ftp.pp-pg-f ← use this over latch (only difference is the source of enable)

- synchronous (by clock)

- bistable
µ,

almost instant

- output changes state at a specified point based on a clock -11

- rising edge *
use edge .

: period of time isveryhort compared to period of high / low
OR

- falling edge IQ
b

"bb%g_Q
*

choosing positive or negative edge- triggered is arbitrary

-12-0
- Q

'

- Q
'

positive edge - triggered negative edge - triggered * flip-flops below are positive edge - triggered
5-R flip-flop g- -K flip-flop

É) Ffp f-s-kfiip-f.PT |Tf-⇒
✗ - don't care

S R Clock Q
"

T - rising edge D clock Q
"

J K clock Q
" T clock Q

'

0 0 ✗ Q no change I T I set 0 0 ✗ IT Q no change 0 T Q no change

0 I T 0 reset o T o
reset 0 I T 0 reset 1 T Q

'

toggle

, o T I set
→ at =D i o T I get → = T

'
.Q + TQ

'

l l T N/A invalid → used for parallel data transfer
, I T a

'

toggle = 1- ⑦ Q

→ at = S + R
'
- Q D Q → = I - Q

'

-1k "Q

clock-1> c

-Do-12-0
-Q

'

build D flip-flop using 5-R flip-flop
'⇒É→[É .

clock-||P-[""""É⇒→ t.jo#-oi
Asynchronous -1 - -1
PRE / preset) = active , Q is immediately set to 1 Pulse

PTD = transition

[LR (clear) = active
,

① is immediately set to 0 } """ " "" "

detector
""¥É:

flip-flop works normally when PRE =ClR=a1¥ve
can use to initial.se flip-flop

→ if PRE :(LR : active
,

invalid input ! build T flip-flop using J -K flip-flop

* active - high : active = I

*
active - low : active = 0

PRE

PRE

clock- =;µ→-Q '
I
CLR

CLR

(toggle command) active - low
when 5--1<=1 7g

:

→ :
line to :

denote

active - low

PRE = 0
PRE = (LR = I CLR = 0

/stateTab-
m flip-flops + n inputs → 2m

"

rows

nput Next state
✗ = 0 ✗ = I|Presents+ate±,÷- ±, I"e÷""e;;;!;¥÷-A B " AB is 9

: : :

lstatedia-gro.FI
state → circle

← input/output Analysis
arrow → transition (with a label of ± /o)

fpresentsta-TInputnextstateflip-flopinput.fmflip-flops → ≤ 2m states

:?!÷÷÷÷÷÷-
- circuit output functions

→ 5-
. "

start from circuit diagram, obtain state table or state diagram
- flip-flop input functions

→ g.A = . . . }
1ˢᵗ letter : flip-flop input if unused states

,

"

✗
"

for everything
KA = .. . 2nd letter : flip-flop name

draw K - map / truth table to get boolean functions

- state equations
B

At = . . . µB× -n_ :;:::F÷::::÷:::i..it?::H.-:-::///ExcitationTabT
TT

_E
-

-used in design TT
- given transition, find flip-flop inputs sink : once the circuit enters this state

,
never exits

a J K S R D T µ"→
F-

0 0 0 ✗ 0 ✗ 0 0 sink / does NOT have to be unused)

0 I 1 ✗ I 0 I 1

I 0 ✗ I ° ' o
'

self - correcting circuit : if circuit (somehow) enters an unused state
,

I 1 ✗ ° ✗ 0 I 0 will exit the unused state in a finite number of transitions

x x x x x x x x |É←O
↑
unused state * draw slash even if only input/output present

⇒ A
'

¥1B '
. .÷. "
:

:

|Memo⇒
→ stores program

& data

memoryhieraihylby-e.sebits

µ
fast
,

1 word : multiple of bytes , for transfer
main memory ⇐ register registers expensive (small numbers),

usually size of register main memory
volatile

desirable properties disk storage
slow
,

I KB : 2
"

bytes
-fasta magnetic tapes ✓ cheap / large numbers),

non- volatile
IMB '

- large " "" it's ③ but most↳ powers don't have
1GB : 2
"

bytes of 2
- economical cost all these

ITB : 24° bytes
- non-volatile (saved even when

* up to 2
"

addressable
Processor

T
MIPS

I
÷:*

.

K - bit address

Address
enable read/write

address%-) memory unit
memory

2k words 0 ✗ none

c-n-bitda.us> read /write-lnbitspei.ws#- , o write

control
Data countries § 1 I read

(R1W, etc . . .) data output

Memory unit stores binary information in
groups of bits (words) write Read

data consists of n lines (for n-bit words) - transfer address - transfer address

data input lines carry data to be written - transfer data to be written - set read /write = 1

data output lines carry data to be read - set read /write = 0

address consists of K lines

control line read/write specifies direction of transfer

|RDM① : Random Access Memory
static RAM Dynamic RAM

ÉÉbps as memory cells _Épator charges to represent data

select - simpler in circuitry But need to be constantly refreshed
•
I

4×3 RAM word size

input_F¥ÉÉ?D- output tot.lk
✗ 8 : 1024 bits (21°)

1k¥
read/write

RAM 1k ✗ 8

select

t ::::¥:÷T "
input _fB①→ output address ADDRIIO)

"
read/write-µ

" output

read/write

fBC : binary / bit cell

[single bit) selects by word
4k ✗ 8 : 4096 bits 12

" address)

2M ✗ 32 : 2
" address

,
32 bit word size

µ use 512k ✗ 8 memory chips

→ keep combining blocks of RAM

22
'
. : 2
"
> 2 million

to make BIGGER blocks of RAM

/Pipelining ↳ /-
- does not help latency of single task MIPSR.pe/ineStages-

- helps throughput of entire workload
IF : instruction fetch

multiple tasks operating simultaneously using
different resources ID : instruction decode & register file read

F-✗ : execute /address calculation

limited by : MEM : memory access

- slowest pipelining stage WB : write back

- stall for dependencies

Pipelined Implementation

- one cycle per pipeline stage
- data required for each stage needs to be stored separately because previous component might be used for something else already

Data used by subsequent instructions are stored in programmer - visible state elements : pc , register file, memory

IPipelineReg-ite.rs/ - not 32 bits (not really registers , its a collection of things)

→ ID/EX → MEMIWB → ~ end ~

and xp,

-

→ E× -

tis written back• RD1 and RD2
. (p[+ 4) + (immediate ✗ 4) - ALU result

• 16-bit offset ' 32 -bit immediate value . ALU result . memory read
data

to register file (if applicable)

(to be sign - extended to
32 - bits) .pl +4

. is zero ? signal . write register using the write register

.pe +4 - write register
. RD2 stored in MEMIWB

- write register

* need to
"

pass
"

write register

along the pipeline registers-→

group
control signals EX Stage MEM Stage WB Stage

based on pipeline stage RegDst ALUSR, Ifluop MenRead Mem Write Branch Mem%Reg Regwrite
IF & ID(no control signals) R- type I 0 10 O O O g I

lw 0 I 00 I 0 0 1 I

sw ✗ I 00 0 I °
✗ 0

beq ✗ 0 01 0 ° I ✗ 0

propagate control signal until utilised
Pipeline
Data path I

V3
'

/ÉyÉpmtaÑ lmuti-cycle-mplementati.FI
-updatatmtat the end of clock cycle

(PC, register file, data memory)
- cycle length based on slowest stage

-

every instruction
takes up 1 cycle - instructions : n cycles e n stages

- cycle length based on slowest instruction ÷:÷:⇒÷÷:
ÉI_ E"

saved
(no WB)F. unused

cycle time :(Tseq = ma' ✗KIT") ← bounded by slowest instruction cycle time :(Tmuti = ma' (Tk) ← bounded by slowest stage

For j instructions : Times@q
= I ✗ (Tseq For I instructions : Timemulti =÷¥f÷,÷I

✗

CTmuhilpipeliningImpleme_ntatiof@overhe.ad
/ latency

-

: pipeline register etc
cycle time : CT

pipeline
= Max (Tx) + Td

For j instructions : j -1N - l cycles ← after first
,
each additional only adds 1 more

Time pipeline = (i + N - 1) ✗ CTpipeline

← Timeseq

assumptions
→ Speedup =

Time-line
: ratio

-

every stage take equal time
j ✗ {I:| -1k

- no overhead
, Td = 0 =

[ÉmaTk)-#
- j > > N

= : -4=-4 :-. . -- Tn

N : number of pipeline stages I : j >> N

= N
#

lpipeh.net/a-zards-/ |Solut)
Structural hazard ① Stall / delay pipeline
- simultaneous usage of hardware ② Separate Data and Instruction memory③ """"""Data hazard / dependency ③ Split register cycle into half

dependencies
-
read /write data in same register - write then read

control hazard / dependency

- to branch or not

pipeline
stagehardwarefread-tfter-fri.IE(RAW) aka true data dependency IF → IM (instruction memory)

ID → REG µadd $1
, $2,43

sub $4
,
$1
,
$2 ← still uses state /old value of $1 MEM → A1U

← separate to

Sola : Ed the data to next instructions Ex → DM (data memory) avoid structural

hazard

Bypass data read from register file WB → REG

add FEE:|add

load (cannot solve with justFEE:add forwarding , still need to stall)
stall

WAR and WAW also exist but do not cause problems
unless executed out of order

←
: conditional branching

|ControIDependency) * can use all these methods in conjunction
-

① Stall pipeline

- waiting for branch outcome wastes 3 clock cycles [next instruction starts after M_EM of beqlbne]
- branching happens very often so

,
not acceptable (BAD !)

magnitude comparator② early branch resolution ③ branch prediction
←

- more computation of is Zero? earlier [ID stage instead of MEM] - assume not branching & start computing |
g
simple /naive way

- reduced from 3 to 1 cycle delay - flush successor instructions from pipeline

(if branch) → terminate immediately
- but if register modified previously , still need

to stall (RAW problem)
¥7

- flush happens before anything is written to register/ memory

→ add so no problem

*T.IE?;:ti--=:::-:T.beq . if correct → no stall needed

- if fail → equivalent to not doing branch prediction in the first place

→ load
-D T

y,

- software can optimise dynamic prediction based on previous branches' 111 HI auto's.pe)beq

next

i-sameasna.ie,

←
not tested

④ delayed branching (software/compiler solution) ⑤ Multiple Issue Processor

- shift order of execution - multiple instructions in each stage

- compute some non - control dependent instruction

(known as branch - delay slot)

compiler
static multiple issue↳ for mash early branch , Isbt § done by

- compiler specifies set of instructions to be executed together

if no suitable instruction
,
use a NOP (no - op) instruction - simple hardware , complex compiler

~ 50% of the time can find Explicitly Parallel Instruction Compiler (EPIC)

Very Long Instruction Word (VLIW)
- IA64

*
easier with early branch resolution

(less branch - delay slots to fill) dynamic static issue

- hardware decides

- complex hardware , simple compiler

superscalar processor - most modern processors
accessing memory

takes

µ
~ 50 ✗ the clock cycles

Ed
uses flip-flop main

↳ ← memory

SRAM DRAM Hard Drive

6 I DDR SDRAM

Double Data Rate Synchronous Dynamic RA1density low high -

""

HEaccess latency fast slow very slow ↳ both positive & negative clock edges used
up. . . . ,n, / µ . ,,, ,.am.

cost $$$$ $$$ $ ¢

CS2 1OO [52106

make SLOW memory look FAST
make SMALL memory look

BIG

ideal : - cache - virtual memory

- small but fast memory near CPU - hardware managed - OS managed
7

- large but small memory further away [✓
transparent
to programmer

W10 forwarding & MEM stage w/ forwarding & MEM stage

① if correct
,
after beg → + °

¥É÷É,_mµ-
①"tw braninpred.it:20

if wrong , same as no branch prediction

② RAW at beg → to

÷:i::I:÷:=:_⇒② RAW at beg → +2

jumpinstrnctionresolntior.IOat ID → + I$e[×/m-±mÉ ③ after beg → + } ② at MEM → +3

③ after beq → +3 ④ lw → + I

"" ÉfÉÉf⇒f⇒µ.mµ_ " F-T.tt/m=.m/wiTT-If::-
⑤ lw then branch → + I

± _Hff¥"µµT÷÷ "HHI-I.it:1/:.-:f.#beq
④ lw then branch → + 2

÷;:÷÷;!÷::ii×⇐⇒
① RAW → to:::::::

② RAW at beq → +2

I

%
.

③ after beq → + I

④ lw → + 2 ④ lw → + I

④ lw then branch → + 2 ④ lw then branch → + 2

☆ RAW can last for multiple instruction (w/ o forwarding)

¥

|[ache] ← uses fast SRAM (usually) * also usable for instruction memory

keep the frequently and recently used data in smaller but faster memory !

Principle of locality : Program accesses only a En of the memory address space within a

smalltime.in/-erval.Temporaltocality-
spa-ialto.ca/ity-

If an item is referenced, If an item is referenced, Instructions & data are in different localities !

tend to be referenced nearbyitem-ter.cl
soon again. to be referenced soon .

Average Access Time = Hit Rate ✗ Hit Time

+ (I - Hit Rate) ✗ Miss Penalty
47 time to replace cache block + hit time .

.

. Miss penalty < hit time

Larger block size miss

rite
+ + spatial locality block size > word size

- - larger miss penalty : larger block to fill to exploit locality

- - lesser cache blocks → miss rate go up
F-yblock

→ need balance to maximise average access time

cache contains :

I. data block cache hit = valid bit is TRUE

& & tag [index) == tag in cache2. Tag of memory block

3. Valid bit (initial :O , after storing data : 1)

(ompulsoryM Conflict Miss CapacityM
- on first access - tag [index] tag in cache - blocks discarded from cache

- valid = = FALSE
ion

/ interference miss ; cache cannot contain all needed blocks

- aka cold start miss,
- FA cache no conflict misses - occurs in FA cache

first reference miss

→ on read miss :

I. load data into cache

2. load from there to register

lwritingwith.at#/ WriteM
-

I. Write - through cache 1 . Write allocate

- write data both to cache and main memory
- load the entire block into cache

- use write buffer to avoid slow write - change the word

- write back depending on write policy

fprocess-T-tco.ch#fDRAmT-/EIteI-t 2
.

Write around

- write directly to memory

2 .
Write - back cache

- only write to cache

- only write to main memory when cache block is replaced /evicted

- use extra bit (dirty bit) to store if a write occurred

WE only write to main memory if dirty ==
TRUE

',É1"jffµ-° -0% hit rate when Ali) and BE:]

Number of blocks in memory = 2
" " mapped to same cache location

"

" """"" ""

so constantly re -write to same block

total bytes (cache) = words ✗ 4 IMIPS) = {
+ M

bytes (: 2N ✗ 2
")

Ñ,.Tam9.n|"^mde×|Ñf[#° total bytes (block) = 2N bytes IN = offset)

Number of cache blocks = 2M (M = index)

→ essentially 1- way SA cache
Tag = 32 - (Ntm) bits

↳ 232
- IN + m)

share same spot

|SetAssociativah[← minimise '"""t mi ""

ffullyn-ssociativelfi-ycache-IN-way.sn> 1
,
N = number of cache blocks in a set place memory block ANYWHERE (no more mapping function)

I. find set (w/ set index) ++ can be placed anywhere (no conflict miss)

2. place in any block in the
set (prioritise left to right for CS2 100) - - need to search ALL cache blocks

i. need to search all the cache blocks in the set (search is done concurrently)
- same cold miss

↳, - capacity miss happens & decreases as cache size increases

IBKY.z.Nnumbe.IO/-nfset-/ total bytes (block) = 2N bytes

(N = offset)

Tag = 32 - N bitsyb""÷÷;"jiµ;
→ essentially all cache blocks in same set of SA cache

Miss rate of N - sized direct - mapped cache

I Miss rate of E- - sized 2- way SA cache

NOT blocks !

§

memory addressing same as direct mapping number of cache sets = 2M

set index = block number % num of cache sets (M = set index)

|%%Rep↳emen

↳
' """'[hebh

① Least Recently Used LLRU) ② FIFO queue

- for cache hit
,
record the cache block that was accessed ③ Random replacement (RR)

- when replacing , replace the one that has not been used for the longest time ④ Least frequently used (LFU)

- good - : temporal locality

- but can be hard to keep track of

Multilevel cache

LRU mpu
NOT a cache tpahes

Iv Iv ←
priority queue (w/ different association ties)

0 4 8 12

that tracks in tandem !

µ access 4 (" least recently used " /
F.0 8 12 4

- Modern CPUs have 3 levels : Lt
,
L2
,
L3

one for each set
µ

1 access 12
Intel /AND

0 8 4 12

removed f access 16

¥

:&; 8 4 12 16

~
3

•

{
° ' 3 2 o i s z

ABCD AB AC AD BC BD CD

OF
4 , , , µ ,

]
}, g g ◦ go, go go ◦ , µ go ◦◦

~
' { 12 13 15 14

I 0001 I 0001 00 00 01 00 01 01

In 8 9 it to 2 0010 2 0010 00 01 00 01 00 to

7-
3 0011 3 0011 00 01 01 01 01 It

if
° ' 3 2

4 5 7 6 4 0100
4 0100 01 00 00 10 10 00

0 I 3 2
5 0101

5 0101 01 00 01 10 11 01

In 6 0110 6 0110 01 01 00 11 10 10
"

.gg
° ' 3 2 ' { ' 2 '3 ' 5 '" 7 ° " " " t ° ' ' ' ° " ° " ° " " " " " " "

4 5 7 6 8 9 11 10 8 1000
8 1000 10 10 10 00 00 00

7- 7-
9 µg ,

9 1001 10 10 11 00 ◦ I 01

~h 10 10 10
10 10 10 10 It 10 01 00 10

.gg
° ' 3 2 O ' 3 2 11 10 11 11 10 11 10 It 11 01 01 It

4 5 7 6 12 1100
12 11 00 11 10 10 10 10 00

"

' { ' 2 '3 15 14 I } It 01
I } " I ° " " I / ° " " " ° " " ° "

th 8 9 11 to 14 11 10
14 11 10 11 11 10 11 10 10

7-
15 11 11

15 11 11 11 11 11 11 11 11

if
° ' 3 2

4 5 7 6

~
0 I 3 2

- 4 5 7 6 § ABCD AB AC AD BC BD CD
-

' { 12 13 15 14
0 0000 0 0000 00 00 00 00 00 00

if
° ' 3 2

4 5 7 6 8 9 11 10 I 0001 I 0001 00 00 01 00 01 01

7- F-
2 0010 2 0010 00 01 00 01 00 to

3 0011 3 0011 00 01 01 01 01 It

° ' 3 2 0 I 3 2 4 0100
4 0100 01 00 00 10 10 00

" 5 7 ° {2 " 5 7 ° µ 5 ° / ° '
° ◦ " ° " ° " ◦ ° ° " " ° " " ° "

' { ' 2 '3 15 14 6 ° / ' ° 6 ° / " ° ° / ° " ◦ ° " " " ° " °

8 9 11 10 8 9 11 10 7 01 11 7 01 11 01 01 01 11 11 It

÷i
"

7- F-
g Iggy

8 1000 10 10 10 00 00 00

9 1001
9 1001 10 10 11 00 01 01

10 10 10
10 10 10 10 It 10 01 00 10

11 10 11 11 10 It 10 11 11 01 01 11

I 0 0 0 I
12 1 , gg

12 11 00 11 10 10 10 10 00

2 ° 0 I °
, } 1 , g ,

13 11 01 11 10 11 10 11 01

3 0 0 I /
14 11 10

14 11 10 11 11 10 11 10 10

4 0 I 0 ° 15 11 11 11 11 11 11 11 11
15 11 11

5 0 I 0 I

6 0 1 I 0

7 0 I 1 I

8 I 0 0 0

9 I 0 0 I fastbooleo.ua/gebra-
10 I 0 I °

2 : 3
,
5

' ' I 0 ' I
3 ; F

, 33,55

12 I 1 ° °
4 : FF

,
F0F

,
3333

,
5555

13 / I 0 I

µ
. . .

.

14 I 1 I 0

unused = ✗

I

