
Internet Protocol Stack

Application
Supporting network applications
FTP, SMTP, HTTP, DNS, DHCP

Transport
Process-process data transfer
Logical communication between processes

Implemented in End System (because need to inject IP / port)
TCP, UDP

Network
Routing of datagrams from source to destination
Logical communication between hosts

IP, ICMP, routing protocols �BGP, OSPF, RIP�
routing protocols are partially Application Layer

Link
Data transfer between neighbouring network elements
Ethernet, WiFi, PPP, ARP (but partially Network layer too)

Physical
Physical bits on wires

Network Paradigms

Packet-Switching Paradigm

Packet Transmission Delay = time needed to transmit L-bit packet into link = 
Packets of length L bits
Transmission rate R (bits / second) aka link capacity, aka link bandwidth

Routing� Determines source-destination route taken by packets (decided by routing algorithms)

Forwarding� Move packets from router's input to appropriate output

Circuit-Switching Paradigm

End-end resources allocated to, reserved for "call" between source and destination.
No sharing of resources

Circuit-like performance
Circuit segment idles if not used by call
Used by traditional telephone networks

Internet Structure

Network of Networks.

Access Nets
Access nets ⇒ regional net � ISP
Access nets � ISP

ISP
ISP � IXP �Internet Exchange Point)
ISP � ISP �Peering Link)

Content Delivery Network covers everything, bypassing tier-I and regional ISPs
Router

For communication to OTHER local area networks
Switch

For local area network
Local connections don't go through router

Hub
Switch, but send same message to everyone (like a broadcast)

Packet Delay

Nodal Processing 
Check bit errors
Determine output link
Very fast

Am292105Notes

Jocket

by 0S



Queueing Delay 
Time waiting at output link for transmission
Depends on congestion level of router

Transmission Delay 
Time for a packet to be transferred onto the physical link
L� packet length (bits)
R� link bandwith (bps)

Propagation Delay 
Time for a packet to travel along the physical link
d: length of physical link
s: propagation speed (~  m/sec)

Throughput

Rate (bits / time unit) at which bits are transferred.  and  are two pipes that the data is flowing through. Doesn't depend on file size.

Message Segmentation

Time = (time for first packet) + (delay between first and second packet) * (n � 1�

delay between first and second packet is bottlenecked by slowest router's transmission rate
ignore propagation �B start transmitting when A propagates)

PROS

Can give way to higher priority packets
Faster to verify the Checksum
Easier to identify which part of the packet is corrupted
Shorter length of message to resend
Include sequence number in parallel streams

CONS

Overhead of many segments
Have to re-arrange and merge messages
All packet switches doing work

Network Protocols

Client-Server Architecture

Server
Always-on host
Permanent IP
Data centers for scaling

Client
Communicates with server
May be intermittently connected
May have dynamic IP addresses
Do not communicate directly with each other

P2P Architecture

No always-on server

Peers request and provide service to other peers

Self scalability! New peers bring service capacity & demand

Peers are intermittently connected and change IP addresses, very complex management

Process: program running within a host

Within same host, two processes communicate using inter-process communication (defined by OS�



Processes in different hosts communicate by exchanging messages
Client-Server

Client process initiates communication
Server process waits to be contacted

Process can have multiple ports for different purposes!

Socket: process sends/receives messages from socket

destination IP address + source IP address + port numbers ⇒ identifies socket

TCP Service

Reliable data transport (correct & ordered)
Flow control: sender won't overwhelm receiver
Congestion control: throttle sender when network is overloaded
Does not provide timing, minimum throughput guarantee, security
Connection-oriented: requires setup
Reliable byte stream, connection-oriented

UDP Service

Unreliable data transfer
Does not provide: reliability, flow control, congestion control, timing, minimum throughput guarantee, security, connection setup
Unreliable datagram, connectionless

HTTP

HTTP uses TCP connection. HTTP is stateless, requests are independent.

Client initiates TCP connection.
Server accepts TCP connection from client.
HTTP messages exchanged between browser and Web Server.
TCP connection is closed.

Note: need to fetch the HTML file itself first before the other objects / resources on the page.

Non-Persistent HTTP

At most one object sent over TCP connection, then it's closed
Downloading multiple objects require multiple connections
Connection: close

Default for HTTP 1.0

Persistent HTTP

Multiple objects can be sent over single TCP connection between client, server
Can send distinct web pages, as long as from same web server

Default for HTTP 1.1
Connection: keep-alive

Response Time

RTT (round trip time): time for a small packet to travel from client to server and back
HTTP response time

One RTT to initiate TCP connection
One RTT for HTTP request and first few bytes of HTTP response to return

file transmission time
� 2RTT � file transmission time

If non-persistent: 2 RTT per object
If persistent: 1 RTT to initiate connection � 1 RTT per object

HTTP Request Message

GET /index.html HTTP/1.1\r\n 
Host: www-net.cs.umass.edu\r\n 
User-Agent: Firefox/3.6.10\r\n 
Accept: text/html,application/xhtml+xml\r\n Accept-Language: en-us,en;q=0.5\r\n Accept-Encoding: gzip,deflate\r\n Accept-
Charset: ISO-8859-1,utf-8;q=0.7\r\n Keep-Alive: 115\r\n 
Connection: keep-alive\r\n 
\r\n 

ii.
.

/represented by
*ness"of garl



HTTP Response Message

Content-Length only includes the length of the content, not the Header

HTTP Methods

HTTP/1.0
GET
POST
HEAD

Only return header

HTTP/1.1
GET
POST
HEAD
PUT

Uploads file in entity body to path specified in URL field
DELETE

Deletes file specified in URL field

Cookies

Cookie header line of HTTP response message
set-cookie: 1678

Cookie header line in HTTP request message
cookie: 1678

Cookie file kept on user's host, managed by browser
Some information is stored on the server (sometimes), but not stored as a cookie

Backend database of website

Use of Cookies

Authorisation
Shopping carts
Recommendations
User session state

Web Caches (Proxy Server)

Satisfy client request without involving origin server.

Conditional GET

In request header, include if-modified-since: <date>
If object is not modified before <date> , server returns 304 Not Modified  with an empty message body
Otherwise, returns as normal

DNS: Domain Name System

Mapping between domain names (or canonical name) and IP address.

Distributed, hierarchical database

method sp URL sp version cr lf 
header-field-name value cr lf 
��� 
header-field-name value cr lf 
cr lf 
BODY 

HTTP/1.1 200 OK\r\n 
Date: Sun, 26 Sep 2010 20�09�20 GMT\r\n Server: Apache/2.0.52 (CentOS)\r\n Last-Modified: Tue, 30 Oct 2007 17�00�02 
    GMT\r\n 
Content-Length: 2652\r\n 
Keep-Alive: timeout=10, max=100\r\n Connection: Keep-Alive\r\n 
Content-Type: text/html; charset=ISO-8859- 
    1\r\n data 
\r\n 
data data data data data ��� 



Client wants to find www.amazon.com
Client queries root  server to find .com  server
Client queries .com  server to get amazon.com  server
Client queries amazon.com  server to get www.amazon.com  IP address

Root name servers are contacted by local name server that cannot resolve name. Provides IP address of TLD servers.

TLD servers are responsible for com , org , net , edu , country domains, etc...

Authoritative DNS servers provide authoritative hostname to IP mapping for organisation's named hosts. Can be maintained by organisation
or service provider.

Local DNS servers are not in global hierarchy of distributed database (because it can be private!!�.

Query Resolution

Iterated Query
Server only returns you the IP address of the next server
Used in practice

Recursive Query
Server recursively asks other servers until it obtains the final IP address, then returns it
Not used in practice because heavy load on upper levels of hierarchy
Essentially double the work

Local DNS server sends / issues iterative queries to other DNS servers, but responds to / processes your query in a recursive way.

DNS Caching

Name server caches mapping (including Local DNS server)
Cache entries timeout after some TTL (time to live)
TLD servers typically cached in local name servers

So root name servers are not visited often

Cached entries may be out of date!
hostname � IP mapping may only be up to date once all TLLs expire

Socket Programming

Port Number

16-bit integer �0 to 1023� are reserved for standard use.

Socket Programming with UDP

No handshaking before sending data
Sender explicitly attaches �IP destination address) and (port number) with each packet

Receiver extracts (sender IP address) and (port number) from each packet

May be lost or received out-of-order
Unreliable datagrams

DNS (port number 53� resolving uses UDP.

UDP CLIENT

UDP SERVER

from socket import * 

server_name = "hostname" 
server_port = 12000 

client_socket = socket(AF_INET, SOCK_DGRAM) # for ipv4, for UDP 
message = "blah" 
client_socket.sendto(message.encode(), (server_name, server_port)) # encode to byte array 
recv_message, server_address = client_socket.recvfrom(2048) # receive up to 2048 bytes 
decoded_message = recv_message.decode() 
client_socket.close() 

from socket import * 

server_port = 12000 
server_socket = socket(AF_INET, SOCK_DGRAM) 
server_socket.bind(("", server_port)) # empty IP address defaults to localhost 



Socket Programming with TCP

Client must perform handshake
Server must be running and have a welcome socket

TCP server creates new socket for each client
Source port numbers / connection are used to distinguish clients

No need to explicitly send �IP address) + (port number)

TCP CLIENT

TCP SERVER

UDP Transport-Layer

UDP: User Datagram Protocol

On top of IP�
Adds connectionless multiplexing / de-multiplexing
Adds checksum

Unreliable, but more performant
Often used by streaming multimedia apps (loss tolerant & rate sensitive)

Application implements error detection and recovery mechanisms to achieve reliable transmission

Why UDP?

No delay of establishing connection
Simple: no connection state
Small header size
No congestion control

UDP Segment Header

Length = payload length (in bytes), including header (header is always 8 bytes)

UDP / TCP Checksum

 Treat UDP segment as sequence of 16-bit integers
 Includes Header � Payload � Pseudo-Header (source address / destination address)

 Apply binary addition on every 16-bit integer
 Carry (if any) from MSB will be added to result
 Compute 1's complement (flip every bit) � UDP Checksum

while True: 
    message, client_address = server_socket.recvfrom(2048) 
    modified_message = modify(message.decode()) 
    server_socket.sendto(modified_message.encode(), client_address) 

��� 
client_socket = socket(AF_INET, SOCK_STREAM) # for TCP 
client_socket.connect((server_name, server_port)) 
client_socket.send(message.encode()) 
recv_message = client_socket.recv(1024) 
client_socket.close() 

server_socket = socket(AF_INET, SOCK_STREAM) 
server_socket.bind(("", server_port)) 
server_socket.listen(1) # maximum number of connections 
while True: 
    connection_socket, addr = server_socket.accept() # waits for connection 
    connection_socket.recv(1024) 
    connection_socket.send(modified_message.encode()) 
    connection_socket.close() # close connection to THIS client 

���       32 bits       ��� 
Source Port # | Dest Port # 
Length        | Checksum 

PAYLOAD��� 



Creating Reliable Data Transfer

rdt1.0

Underlying channel perfectly reliable
No bit errors
No loss of packets

rdt2.0

Underlying channel may flip bits (corrupt packet)
Use Checksum to detect this

Receiver explicitly ACK  and NAK
Sender retransmits packet on NAK

Problem: cannot detect duplicate packets

rdt2.1: rdt2.0 + packet sequence

Sender adds sequence number �0 or 1� to each packet
Receiver discards duplicate packet

rdt2.2: NAK-free

Instead of NAK, receiver sends ACK0  or ACK1  (include sequence number)
Sender retransmits current packet if duplicate ACK

rdt3.0

Underlying channel can lose packets (data, ACKs) → in addition to corruption
Sender waits a "reasonable" amount of time (close to RTT� for ACK

Requires countdown timer
Retransmits if no ACK received

Sender ignores duplicate ACKs (already know it's received) & corrupted ACKs (let timer resolve it)
Receiver must ACK duplicate packet (otherwise will be livelock, because sender will keep retransmitting), receiver can ignore corrupted
packets (must send feedback by definition of rdt3.0, but doesn't actually break the correctness of the protocol, just treat it as lost)
Correct, if messages are not reordered (reasonable assumption if sender and receiver are connected by a single wire)

To rectify:
Use a 32-bit sequence number to lower chance of reuse
Use a Time-To-Live �TLL� field that decreases by one each time the datagram arrives at a router

Once this field reaches 0, discard the datagram

Pipelined Protocols

Go-Back-N (GBN)

aka Sliding Window Protocol

Re-transmits (up to) everything even if only one packet is dropped!

GO-BACK-N SENDER

Use k-bit sequence number 
"Window" of up to N consecutive un-ACK'd packets are allowed
Single timer for oldest in-flight packet
When timeout, retransmit entire window

If received ACK of 1� resend 

GO-BACK-N RECEIVER

Always ACK for correctly-received packet with highest in-order sequence number (cumulative ACK� � not expected
Only need to remember the expected sequence number

Out-of-order packet
Just discard
Still sends ACK for packet with highest in-order sequence number

Selective Repeat

Receiver individually acknowledges all correctly received packets
Buffers out-of-order packets
If in-order

Deliver packet + buffered packets to application
Advance window to next not-yet-received packet



Sender maintains timer for each unACK'd packet
When timer expires, only retransmit that packet
IF ACK'd packet is the smallest unACK'd packet, advance window base to next unACK'd packet

Views for Sender and Receiver might not be consistent!

TCP Transport Layer

Fully duplex data: bi-directional data flow (no sender or receiver)
Both sides have sending & receiving buffers

Reliable, in-order byte stream: no message boundaries
Maximum Segment Size �MSS�� maximum application-layer data a TCP segment can carry (typically 1460 bytes)

Limited by Maximum Transmission Unit �MTU� �1500 bytes for Ethernet)
Retransmissions are triggered by:

timeout events
3 duplicate ACKs (total 4 ACKs)

Still useful even if links are reliable:
All links are reliable, but malicious or full routers can lose packets.
Data taking different paths can lead to re-ordering.

TCP Header

Sequence number of first byte
Initial sequence number is randomly chosen
SYN  consumes an extra sequence number
ACK  does not consume sequence numbers

Acknowledgement number: sequence number of next expected byte (from other side)
Cumulative ACK

head  length of header in 32-bit words �4 bits)
minimum size is 5 words, maximum size is 20 words, allows for up to 40 bytes of options

reserved / unused space �4 bits)
U  urgent data (not generally used)
A  acknowledgement bit: 1 if valid acknowledgement field, 0 if should ignore (only for first packet of set-up)
P  push data now (not generally used)
RST , SYN , FIN  setup, teardown commands
rwnd  receive window: # bytes receiver is willing to accept

Used for congestion control

Same checksum as UDP's checksum
TCP spec doesn't mention how receiver handles out-of-order segments (can choose to buffer)

Connection-Oriented Demux

Same destination IP address + port ⇒ demultiplexed to different sockets
Identified by (source IP, source port, dest IP, dest port)

Handled by OS

TCP 3-way Handshake

Client sends TCP with SYN  bit, with SEQ = x
Server sends TCP with SYN  bit, with SEQ = y , A = 1 , ACK = x+1  ( SYN  consumes a sequence number)
Client sends TCP with A = 1 , ACK = y+1  (might also send data)

TCP Closing Connection

Client, Server each close their "sending side"
Sends TCP segment with FIN = 1
Responds to FIN  with ACK , can combine with own FIN

���        32 bits        ��� 
Source Port # | Dest Port # 
       Sequence Number 
    Acknowledgement Number 
head    UAPRSF| rwnd 
Checksum      | urgent_data_pointer 
  options (variable length) 

Application Data (variable length) 



After closing, can no longer send data (except ACK�
BUT, still receives data!

After sending ACK  for a FIN , must wait 2 * max segment lifetime in case this last ACK  is lost!

TCP RDT

TCP Sender

Receive data from application
Start single timer (if not already running) for oldest unACK'd segment

Send the segment
Re-transmits single segment when:

Timeout (then, restart timer)
Fast retransmission

On receiving ACK
If ACK acknowledges previously unACK'd segment
Update known ACK'd segments
Start timer if there are still unACK'd segments

TCP ACK Generation

Event at receiver TCP receiver action

Arrival of in-order segment with expected sequence number. All data up to expected
sequence number has been ACK'd.

Delay ACK. Wait up to 500ms for next segment. If no segment, send
ACK.

Arrival of in-order segment with expected sequence number. One pending ACK'd. Immediately send single cumulative ACK, ACKing both segments.

Arrival of out-of-order segment with higher sequence number. Gap detected!
Immediately send duplicate ACK, indicating sequence number of
next expected byte.

Arrival of segment that partially or completely fills gap.
Immediately send ACK, provided that segment starts at lower end of
gap. (fulfils cumulative ACK�

TCP RTT, Timeout

Timeout needs to be longer than RTT
If too short: premature timeout, unnecessary retransmissions
If too long: slow reaction to segment loss

Measure , the measured time from segment transmission until ACK receipt (ignoring retransmissions).

Exponential weighted moving average
Influence of past sample decreases exponentially fast
Typically, 
Typically, 

TimeoutInterval � EstimatedRTT � 4 * DevRTT
EstimatedRTT � Safety Margin

TCP Fast Retransmit

If sender receives 4 ACKS for same data (aka triple duplicate ACKs)
Immediately resend unACK'd segment with smallest sequence number

Network Layer

Forwarding (local behaviour): Move packets from router's input to appropriate router output
Routing (global behaviour): Determine route taken by packets from source to destination using routing algorithms
Data Plane (lower layer)

local, per-router forwarding function
determines how datagram arriving on router input port is forwarded to router output port

Control Plane "brain" (upper layer)
network-wide logic
determines how datagram is routed among routers along end-end path from source host to destination host
two approaches: �1� traditional routing algorithms (implemented in routers), (2) software-defined networking �SDN� (implemented in
remote servers)

IP Addressing

Interface: connection between host / router and physical link



routers typically have multiple interfaces
host typically has one or two interfaces (wired Ethernet, or wireless WiFi)
an IP address is associated with each interface

Subnets

Subnet is a network formed by a group of "directly" interconnected hosts.

hosts in same subnet can physically reach each other without intervening router

connect to other subnets through router

hosts in same subnet have same network prefix of IP address

Number of subnets = detach each interface from its host or router to create islands of isolated networks

CIDR� Classless InterDomain Routing

arbitrary length for the subnet portion
a.b.c.d/x , x  is number of bits in subnet portion of address
← network part ( x  bits) →← host part ( 32 - x  bits) →
subnet mask = set all network bits to 1  and host bits to 0 , use bitwise AND to find network

can represent as a single number, or in binary
subnet mask of 0  matches everything

Supernetting

Combining many subnets into one large subnet.
Decreases the number of unusable (reserved) IP addresses!

Take the longest common prefix. This longest prefix will match all the above.

Subnetting

Breakup a subnet into smaller subnets
For organisation of subnets

For example, each company has its own subnet
Because communication within subnet use switch (not router!�
Want to isolate each company's subnet

Start from the biggest (or smallest) subnet
find out how many bits are needed
assign an appropriate prefix to it
size must always be in power of 2

Special IPs

ISP gets blocks of addresses from ICANN �Internet Corporation for Assigned Names and Numbers)

allocates addresses
manages DNS
assigns domain names, resolves disputes

Special Addresses Present Use

0.0.0.0/8 Non-routable meta-address for special use

127.0.0.0/8 Loopback address.Datagram sent to localhost loops back inside the host

10.0.0.0/8 
172.16.0.0/12  
192.168.0.0/16

Private addresses, can be used without coordination with Internet registry

255.255.255.255/32 Broadcast address. All hosts on same subnet receive datagrams sent with this destination address.

first IP address is reserved for network address (name of the network)
last IP address is reserved for broadcast
gateway router can be any IP address - need not be the first usable one! �DHCP will let you know this IP address)

Hierarchical addressing: route aggregation. Just need to announce the block of IP addresses for an organisation / ISP.

can announce multiple (to handle organisations switching ISPs)
longest prefix matching, i.e. match the one with the higher x
there's a default route, usually to ISP's special website

DHCP

2 ways to get IP address:

.....
-ampic **
S



Host's IP address is hard-coded by system admin.
OR DHCP (don't need any configuration, dynamically obtain)

Dynamic Host Configuration Protocol: allows host to dynamically obtain IP address from network server when joining a network

goal:
can renew lease on address
allows reuse of addresses (only holds address when someone is actively using it)
support for mobile users

overview - everything is broadcasted (only difference is 67 or 68�
host broadcasts DHCP discover message (optional)

uses source IP of 0.0.0.0  (because not assigned yet)
server responses with DHCP offer message - containing a few IP addresses (optional)
host requests IP address with DHCP request message

uses source IP of 0.0.0.0  (because not assigned yet)

server sends address with DHCP ack message
after which, done, the host is officially assigned to that IP address
also exists: DHCP renewal (request to re-use IP address) and DHCP release (give up IP address).

DHCP can also return
address of first-hop router for client
name and IP address of DNS server
network mask

DHCP runs over UDP
DHCP server port number: 67
DHCP client port number: 68

Note: there might be multiple DHCP servers (offering at the same time), which is why everything must be broadcasted, so everyone is
aware.

Even if a subnet is not using DHCP, router will relay it to a subnet with a DHCP server

IPv4 Datagram Format

ver �4 bits)
IP datagram length �16 bits) - header + data
identifier �16 bits) - for fragmentation / reassembly
flags �3 bits)

1bit for frag bit
fragment offset �13 bits)
TTL �8 bits) - number of remaining hops (decremented at each router), kills datagram when TTL � 0
upper layer protocol �8 bits): TCP / UDP (violates upper-lower abstraction!�
header_checksum �16 bits): only for IP header
total: 20 bytes

IP Fragmentation

Different links have different MTU �Max Transfer Unit) - maximum amount of data a link-level frame can carry
IP datagrams have to be fragmented by routers (if too large)

Reassembled only at final destination host
Frag Flag set to 1 if there's a next fragment of same segment; 0 if this is last fragment
Offset is expressed in units of 8-bytes (aka 64 bits)

offset of DATA relative to beginning of original un-fragmented IP datagram, excludes header

IP � UDP Fragmentation

Nothing to modify

IP � TCP Fragmentation

���        32 bits        ��� 
ver           | IP datagram length 
identifier    | flags | fragment offset 
TTL | upper_layer | header_checksum 
        source IP address 
         dest IP address 
Data 

I

yiaddr:your allocated address

DHCP Client

223. 1.2.5

""e!
·i

·

requestin
I 3600

sec I

I

ji"reI sel

I

I

1180 =480 +480 +248

:
*Pheader



TCP anticipates IP fragmentation, TCP segments itself first such that IP fragmentation will never happen
So, every segment will contain TCP header
Happens in Transport Layer (knows the MTU through OS, or some other way)

NAT Table

Network Address Translation

WAN (wide-area network) - the internet
all datagrams leaving LAN have same source NAT ip address (with unique port number)
Port numbers are from , but  are reserved.

LAN (local-area network)
within LAN, hosts use private IP address to communicate

Port numbers are from , none are reserved. So, can use any in that range!

NAT routers must

outgoing: replace (source IP address, port number) of every outgoing datagram to �NAT ip address, new port number)
store: remember in NAT table the mapping of the above
incoming: replace �NAT ip address, new port number) in destination fields of every incoming datagram with corresponding (source IP
address, port number) stored in NAT table

Motivations & Benefits & Cons

only require one public IP for the NAT router
all hosts use private IP address, can change these without notifying outside world
can change ISP without changing addresses of hosts in local network
hosts inside local network are not explicitly addressable and visible by outside world (protected by NAT router, good for security!�
bad for peer to peer connections

Intra-AS Routing

AS � Autonomous Systems, normally tied to an ISP (i.e. Singtel, Starhub...)

finds a good path between two routers within an AS
single admin, no policy decisions needed
routing focuses on performance
commonly used: RIP, OSPF

Bellman-Ford

 = cost of link between routers x and y (infinity if not direct neighbours)
 = least-cost from x to y

where  is 1-hop neighbourhood
At t � 0

all nodes have distance estimates to nearest neighbours only
then, all nodes send their local distance vector to their neighbours

At each next time interval
all nodes receive distance vectors from neighbours (after some time interval)
then, all nodes compute their new local distance vector
then, all nodes send their local distance vector to their neighbours

Pros

iterative, asynchronous: each local iteration caused by
local link cost change
distance vector update message from neighbour

distributed, self stopping: each node notifies neighbours only when its own distance vector changes
then, only propagate if necessary
no new estimate ⇒ no actions taken

Implemented by RIP �Routing Information Protocol)

uses hop count (total number of intermediate routers) as cost metric
insensitive to network congestion

exchanges routing table every 30 seconds over UDP port 520
self-repair: if no update from neighbouring router for 3 minutes, assumes neighbour has failed
can split paths for equal-cost links (cannot do more advanced load balancing)

use router IP

s ⑱
from NAT

change src IP & port
are

-
-
*

-
i

medstIP & port
Isame as



Inter-AS Routing

not covered in-depth in CS2105

handles interface between ASs
admin often wants control over how traffic is routed, who routes through net, etc
security policy over performance
de facto standard protocol: BGP

ICMP

Internet Control Message Protocol: used by hosts & routers to communicate netowrk-level information

error reporting: unreachable host / network / port / protocol
echo request / reply (used by ping )

ICMP messages are carried in IP datagrams, ICMP header starts after IP header. It is in the transport layer, but only used for network stuff.
(still considered network layer)

ICMP Header = type + code (sub-type) + checksum + others

Type Code Description

8 0 echo request (ping)

0 0 echo reply (ping)

3 1 dest host unreachable

3 3 dest port unreachable

11 0 TTL expired

12 0 bad IP header

* some of the ICMP types and codes

ping  checks if remote host will respond (i.e. is there a connection?�
traceroute  sends small packets, with different TTL, to attempt to display routes to get to a remote host

might need to run a few times to get all possible routes

Link Layer

Framing
Link access control
Error detection

not 100% reliable
Error correction (without retransmission)
Reliable delivery (often used on error-prone links like wireless)

Link layer is implemented in "adapter" (aka NIC� or on a chip � Ethernet card, or WiFi adapter. Adapters are semi-autonomous, implementing
both link & physical layers.

Different link-layer protocols may be used on different links, each providing different set of services.

Data link layer has responsibility of transferring datagram from one node to physically adjacent node over a link.

Error Detection

Parity Checking: Single Bit

For even parity scheme, sender includes one additional bit that is such that the total number of 1 s in the d + 1  bits is even. Can only detect
odd number of single bits errors. Works very well in theory, but errors are clustered together in "bursts" in practice. So, the probability of
undetected errors approaches 50%, not good enough!

Parity Checking: 2D

Split  bits into  rows and  columns. A parity value is computed for each row and column, and a final  that is the parity bit for the
column parity and row parity bits.

detect and correct single bit errors in data (the row and column bits align)
detect any two bit error (two possibilities)
detect all three bit error, consider two bit, but try to hide it by using one of the corners, but can only hide one of the errors
cannot detect all four bit error

Cyclic Redundancy Check (CRC)

:  data bits, viewed in binary
: generator of  bits, pre-agreed by sender and receiver

8 11

1. i Isoli
correct exame



: the  bit CRC, left-pad with 0 until  bits
no carries for addition, no borrows for subtraction. both addition and subtraction becomes XOR
take the  to get . use long division
sender sends , receiver performs , if non-zero remainder, there's an error
performance

detects all odd number of single bit errors

CRC of  bits can detect
all burst errors of less than  bits
all burst errors of greater than  bits with probability 

CRC is hardware-optimised, but not efficient for software, so not used in transport and network layers.

Network Links

 point-to-point link
sender and receiver connected by dedicated link
Point-to-Point Protocol �PPP�, Serial Line Internet protocol �SLIP�, no need for multiple access control

 broadcast link (shared medium)
multiple nodes connected to shared broadcast channel
when a node transmits a frame, the channel broadcasts the frame, and every other node receives a copy.
collision if a node receives two or more signals at the same time (cannot distinguish!�

Ideal Access Protocol

Collision Free
Efficient: when only one node wants to transmit, it can send at rate 
Fairness: when M nodes want to transmit, each can send at average rate  (equally shared)
Fully Decentralised: no special node required (no single point of failure)
Must use channel itself to coordinate (cannot use some out-of-band / external means of channel signalling)

Channel Partitioning Protocols

TIME DIVISION MULTIPLE ACCESS (TDMA)

each node gets fixed length time slots in each round
length of time slot = data frame transmission time
if unused, time slot is idle

used in GSM
Collision Free: yes
Inefficient

unused slots are idle
maximum throughput is 

Fairness: perfectly fair
Decentralised (but, there's a need to synchronise clocks, difficult to implement in practice because of latency)

FREQUENCY DIVISION MULTIPLE ACCESS (FDMA)

channel spectrum is divided into frequency bands
each node assigned a fixed frequency band
if unused, frequency band is idle
used in radio, satellite systems
Collision Free: yes
Inefficient

unused slots are idle
maximum throughput is 

Fairness: perfectly fair
Decentralised

Taking Turns Protocols

POLLING

master node polls each node in round-robin fashion
master informs node  it can transmit up to some maximum number of frames
assumes no malicious actor
star topology

used for Bluetooth (phone is master, accessories are slaves)
Collision Free: yes

-frameletit I

inthetime
m

wasted!



Almost fully efficient
overhead of polling, cannot achieve exactly 

Fairness: perfectly fair
Decentralised: NO, there exists a master node

TOKEN PASSING

token is passed from node-to-node sequentially
when a node receives a token

if have frames to transmit: hold on to the token and sends up to a maximum number of frames and then forwards token to next
node
else: forward token to next node immediately

used in FFDI �Fiber Distributed Data Interface), Token Ring
Collision Free: yes
Almost fully efficient

overhead of token passing, cannot achieve exactly 
Fairness: perfectly fair
Decentralised: YES
Downsides

token loss can be disruptive (due to data frame loss, system bugs)
node failure can break the ring
not a simple protocol to implement

Random Access Protocols

when a node has data to send
transmits at full channel data rate 
no a priori coordination among nodes

protocol specifies
how to detect collisions

how to recover from collisions

SLOTTED ALOHA

all frames are of equal size,  bits
time is divided into slots of equal length

length = time to transmit 1 frame = 
nodes only start transmitting at beginning of slot

time is synchronised at each node
when a node wants to send

wait until beginning of next time slot and transmits the entire frame
if no collision: success
if collision: retransmit the frame in each subsequent slot with probability  until success

used in wireless packet switched network �ALOHAnet)
Collision Free: no
Efficient?

yes, when only one node is active
no, when there are many active nodes (because of collision) - maximum efficiency is only 37% with best chosen 
slots are wasted because of collision and being empty

Fairness: perfectly fair
Decentralised: Yes

PURE (UNSLOTTED) ALOHA

ALOHA, but no time slots, no synchronisation.

when a node wants to send
transmit immediately

if no collision: success
if collision: wait for 1 frame transmission time, retransmit with probability  until success

chance of collision increases, frame sent at  collides with , doubles the range of collision
same as Slotted ALOHA, but maximum efficiency is worsened to 18%

CARRIER SENSE MULTIPLE ACCESS

aka CSMA / CA �Collision Avoidance)

A:Iwas bestusing,
6k

B:ims us isx

..reignty,
I ... 1 time

ofm

-

-

=

I I I

to -1 ts to + 1



before transmission:
if channel sensed idle: transmit entire frame
if channel sensed busy: defer transmission

can still collide because of propagation delay (because nodes don't hear each other immediately)
used by WiFi

half duplex: cannot listen and send at the same time

not ideal if most nodes are likely to transmit frequently

CSMA / CD (COLLISION DETECTION)

if channel sensed idle: transmit entire frame

if channel sensed busy: defer transmission
if collision detected: abort transmission

retransmit after a random delay using Binary Exponential Backoff
after th collision, choose  at random from 

waits  frame units, each frame unit is 64 bytes � 512 bits (minimum frame size), take frame unit divide by speed of Ethernet
to get frame unit

retransmission attempts to estimate current load
more collisions imply heavier load, so use a longer back-off interval

used in (now-obsolete) Ethernet
full duplex because wired, can distinguish between parties

has a minimum frame size so that can detect when collisions occur �Ethernet uses 64 bytes)
Collision Free: no
Efficient: yes
Fairness: yes
Fully Decentralised: yes

MAC (Media Access Control) Address

Every adapter �NIC� has a MAC address (aka physical or LAN address).

NIC � Network Interface Card; ROM � Read-Only Memory

used to send and receive link layer frames
when an adapter receives a frame, checks if destination MAC address of the frame matches its own

if yes, adapter extracts the enclosed datagram and passes it to protocol stack
if no, discard

MAC address is typically 48-bits, burned in NIC ROM (sometimes software settable, but most devices don't let you configure it)
typically in hexadecimal, i.e. 5C�F9�DD�E8�E3�D2
MAC address administered by IEEE (first 3 bytes identifies vendor of an adapter)
broadcast address: FF�FF�FF�FF�FF�FF (all 1 s)

duplicate MAC addresses in the same subnet is problematic and will be severely disrupted (doesn't matter if not in same subnet)

Local Area Network (LAN)

Computer network that interconnects computers within a geographical area.

IBM Token Ring
Ethernet (dominant) - everything is sent through The Ether

series of standards developed over the years with different speeds and physical layer media (cable, fibre optics)
MAC protocol and frame format remain unchanged

WiFi
etc

Ethernet

Ethernet Frame Structure

preamble � 8 bytes
7 bytes with 10101010  � 1 byte with 10101011  (start of frame)

only differs by the last bit
used to synchronise receiver and sender clock rates (the interval between these bytes provides a square wave pattern)

destination address � 6 bytes
source address � 6 bytes
type � 2 bytes

indicates network-layer protocol used (might not be IP�
allows Ethernet to multiplex network-layer protocols

->
thickness"of ·Iboth B,D aborts

link:MAC protocol & frame format

physical:itita



analogous to protocol field in network-layer datagram, port-number fields in transport-layer segment
data � 46 to 1500 bytes

minimum size to ensure collision will always be detected
CRC � 4 bytes

Ethernet Reliability

Unreliable because receiving NIC doesn't send ACK or NAK to sending NIC. Requires TCP usage in higher-layer to ensure this.

Ethernet Topology

BUS TOPOLOGY

original Ethernet LAN used coaxial bus
broadcast LAN

all transmitted frames received by all adapters connected to the bus (all nodes can collide)
if backbone cable is damaged, entire network fails
difficult to troubleshoot problems
very slow and not ideal for larger networks (due to a lot of collisions)

STAR TOPOLOGY

Hub - nodes physically connect to this
popular in 1990s, deprecated now
physical-layer device that acts on individual bits rather than frames

when a bit arrives: re-creates the bit, boosts its energy strength, transmits bit onto all other interfaces
cheap, easy maintenance (due to modular design)
very slow and not ideal for larger networks (due to a lot of collisions)

Switch - nodes physically connect to switch
popular since 2000s
data-link layer device, acts on frames
no collisions, bona-fide store-and-forward packet switch
selectively forwards frame to one-or-more outgoing links (based on incoming frame's MAC address)
store and forward Ethernet frames
uses CSMA / CD to access link
transparent: hosts are unaware of presence of switches
do not need to be configured!
handles multiple simultaneous transmissions:

nodes have dedicated, direct connection to switch (no collisions!�
switches buffer packets
Ethernet protocol used on each incoming link (but no collisions)
A-to-B and C-to-D can transmit simultaneously

switches can be connected in hierarchy
unmanaged switches do not require MAC address or IP address

Switch - for LAN

Switch Forwarding Table

Format: �MAC address of host, interface to reach host, TTL�

Self-learning.

when frame is received, switch learns location of sender, records this in the table
when frame is received

record incoming link, MAC address of sending host
index switch table using MAC destination address

if entry is found
if destination on segment from the frame which arrived: drop the frame
else: forward frame to interface stored in entry (unicast)

else: flood (broadcast) to all interfaces (except arriving interface)
if it's a switch, that switch will handle it
if it's a host, that's already the host

ARP - Address Resolution Protocol

Find 48-bit MAC address with 32-bit IP address.

Each IP node has an ARP Table, �IP address, MAC address, TTL�

Dee

Ihierarchy of switches

externalFreir
-
-

⑮

I

i



Router, Host all require ARP table. Switch only requires Forwarding Table.

Only stores information for some neighbouring hosts in same subnet �LAN�.

Same Subnet
 If A knows B's MAC address from its ARP table

 Create a frame with B's MAC address and send it
 Only B will process this frame (others will ignore even if they receive it)

 A does not know B's MAC address
 A broadcasts an ARP query packet, containing B's IP address

 destination MAC address of FF-FF-FF-FF-FF-FF  (broadcast address)
 All other nodes (in subnet) will receive it, but only B will reply

 B replies to A with its MAC address (unicast to A's MAC address)
 A caches B's IP-to-MAC address mapping in its ARP table (until TTL expires)
 Then, do as for case 1

Different Subnet � Gateway Router R will handle connection between subnets
 A creates IP datagram with IP source A, destination B
 A creates link-layer frame with R's MAC address as destination address, frame contains A-to-B IP datagram

 If don't know R's MAC address, do ARP for it
 R receives frame and passes the datagram to IP
 R forwards datagram with IP source A, destination B
 R creates link-layer frame with B's MAC address as destination address, frame contains A-to-B IP datagram (only Ethernet frame

changes, IP header and everything above doesn't change)

Network Security

Somewhere between Application and Transport layers.

confidentiality: no eavesdropping, i.e. only sender and intended receiver should understand the content
authentication: sender and receiver can confirm identity of each other
message integrity: any alteration must be easily detected

access and availability: services must be accessible and available to users

Cryptography

Symmetric Key Cryptography = sender and receiver uses same key

need to agree on key
Asymmetric Key Cryptography (aka Public Key Cryptography) = sender and receiver uses different key

do not share secret key, encrypt with public, decrypt with private (or vice versa)
slow compared to symmetric
in practice, one party creates a symmetry key, and uses RSA to transfer it, then uses that symmetric key as the session key

Ciphers

Cipher text shouldn't reveal any information about the original message. Has been shown that the key needs to be at least as long as the
original message to leak 0 information.

Caesar's Cipher: each character +k  position (wrapped-around), only 25 possible values
Mono-alphabetic Cipher: mapping of 26 letters to set of 26 letters, only 26! mappings

broken through Statistical Analysis by using letter frequency

Poly-alphabetic Cipher: use multiple mappings that cycle
define  substitution ciphers and a cycling pattern, e.g.  (can repeat, and this pattern cycles on infinitely)
character 1 uses first, character 2 uses second, etc... (space doesn't increment the pattern)

Block Cipher: process in K-bit blocks, each block is encrypted independently using a one-to-one mapping,  number of keys
DES� Data Encryption Standard, with 56-bit symmetric key, 64-bit block (broken in less than a day)
3DES� DES but encrypt 3 times with 3 different keys
AES� Advanced Encryption Standard, 128, 192, 256 bit keys, 128-bit block

Breaking Encryption

ciphertext only attack: attacker has ciphertext to analyse
known plaintext attack: attacker has plaintext corresponding to ciphertext
chosen plaintext attack: attacker can get ciphertext for any chosen plaintext

RSA: Rivest, Shamir, Adleman Algorithm

 choose two large prime numbers, ,  �1024, or 2048 bits long)
 compute , 

->has
diff. MAC, IP for each interface



 choose  ( ) such that it has no common factors with , aka relatively prime (randomly generate until find a valid , OR generate a
prime number)

 choose  such that  (  is exactly divisible by )
 public key is , private key is 

Encryption & Decryption

to encrypt message  ( ): compute 
to decrypt encrypted : compute 

Message Integrity

Uses Cryptographic Hash Functions

 takes large (unbounded size) input  and produces fixed-size message digest / fingerprint
computationally infeasible to find any two different messages  and  such that .

 pre-image resistance
 given hash output, can't find original message

 second pre-image resistance
 given hash(m1) = h, very hard to find m2 such that hash(m2) = h as well

 collision resistance
 hard to find m1 and m2 such that hash(m1) = hash(m2), and m1 !� m2

small change in input should result in large change in hash output
passwords are hashed using similar techniques, that's why you cannot recover the original password
common ones

MD5 (cryptographically broken), still used for non-critical uses (e.g. websites share MD5 hash for file downloads)
SHA�1 (deprecated, cryptographically broken)
SHA�2, SHA�3

Message Authentication Code

Cannot just send  because attacker can replace with  and it won't be detected
Send  instead, where  is the authentication key

Digital Signature

digital signature: sign with private, decrypt with public
verifiable: receiver can check the signature
unforgeable: no one else can generate this message (because private key) - non-repudiation (sender can't claim he didn't send it)

optimisation: only sign message digest  because signing long stuff is more expensive
good for bandwidth & computation; still sufficient

Certificate Authorities (CA)

CA maintains public database of everyone's public key.

CA signs its messages with its own private key. The public key of CAs are hardcoded into Operating System, as a list of Trusted Root Certificate
Authorities.

 (person or router) registers its public key with CA
 provides a proof of identity to CA

CA creates certificate binding  to its public key, this contains 's public key digitally signed by CA

Firewalls

Firewall isolates organisation's internal net from larger Internet, allowing some packets, while blocking others.

prevents DoS �Denial of Service) attacks: SYN flooding with bogus TCP conenctions
prevents illegal modification / access to internal data
allow only authorised access to inside network
internal network connected to Internet via router firewall (both IN and OUT�
router filters packet-by-packet, decides to forward / drop packets based on (network & transport layer)

source & destination IP address
TCP / UDP source and destination port numbers
ICMP message type
TCP SYN & ACK bits

examples
no outside web access: drop all outgoing packets to any IP address, port 80



prevent network from being used for a smurf DoS attack: drop all ICMP packets going to a "broadcast" address (e.g.
130.207.255.255 )
prevent network from being tracerouted: drop all outgoing ICMP TTL expired traffic

limitations
IP spoofing: router can't know if data really comes from claimed source
can become bottleneck (can use multiple firewalls instead, but costly)
tradeoff: degree of communication with outside world VS level of security (e.g. nuclear rocket computers not connected to
Internet)
many highly protected sites still suffer from attacks (might provide a false sense of security)

Access Control Lists (ACL)

Table of rules applied top to bottom.

action source address destination address protocol source port destination port flag bit

allow 222.22/16 outside of 222.22/16 TCP � 1023 80 any

... ... ... ... ... ... ...

deny all all all all all all

Multimedia Networking

Application Types

streaming stored: can begin playout before downloading entire file
stored at server / CDNs, can transmit faster than audio / video will be rendered
pre-processing done to optimise this

conversational (two-way live): interactive
delay more than 400ms is intolerable

streaming live (don't have to be real-time, 10s delay is fine)
typically done with CDNs

Data is transmitted over-the-top (over the Internet, as compared to cable / broadcast / satellite)

* applicable for both video and audio

Video

Videos are sequences of images displayed at a some constant rate. Digital image: array of pixels, each pixel represented by bits. Videos
have high bit rate. To reduce data usage, compress the video by using redundancy.

reducing redundancy
Spatial coding (within image): aggregate pixels of the same colour
Temporal coding (between two frames): only send the delta of the frames
reduces the size of each frame, number of frames remain the same

bit rate
Constant Bit Rate �CBR�� fixed video encoding rate (might be wasteful)

not responsive to complexity of video
bitrate need to be high enough to handle the most complex segments of video
well-suited for real-time encoding because of consistency

Variable Bit Rate �VBR�� encoding rate changes with spatial, temporal coding
well-suited for on-demand video because can pre-process data, and can buffer data

Audio

Sampled at constant rate, each sample is quantised (rounded) to a value represented by bits. (i.e. 256 quantised values require 8 bits, so
with 8,000 samples / sec � 8,000 � 8 � 64,000 bps)

Streaming Stored Content

constraints
Continuous Playout Constraint: once client playout begins, playback must match original timing, even with network delay being
variable.
allow client interactivity: pause, fast-forward, rewind, jumping, etc...
video packets may be lost / retransmitted

application playback buffer to buffer content, let fill rate = , average fill rate = , playout rate = 
if : buffer eventually empties (video freezes until buffer fills)
if : buffer will not be empty provided initial playout delay is large enough to absorb variability in 
initial playout delay tradeoff:

4
xquartisedratet

TTTTTTT,



buffer starvation less likely with larger delay
but larger delay until user can start watching

buffers data for smooth playback, client can play any part of this buffer (NOT the same as TCP buffer, TCP buffer is for storing out-
of-order segments)

RTP vs RTCP

RTP � Real-Time Transport Protocol
Delivers interactive data

Pure data only
Purpose: time-stamp, sequence and mixing (combining video with audio)
UDP because speed is most important, don't need to be reliable

RTCP � RTP Control Protocol
Delivers statistics and control information (non-interactive)

How many bits, quality of bitstream
Delivered over next odd UDP port number that the RTP stream uses

RTSP � Real-Time Streaming Protocol
Used to establish and control media sessions during endpoints.

Setup
Play / stop
Change quality

TCP because requires reliability, but not necessarily speed
Need to make sure the setup is correct

Streaming through UDP

server sends at (often constant) rate appropriate for client
push-based streaming (server push)

UDP has no congestion control
occasional loss of data won't affect future data because no-resending

only requires short playout delay �2�5 seconds) to remove network jitter
error recovery depends on application level

Streaming through HTTP

multimedia file retrieved via HTTP GET
pull-based streaming (client pull)

sends at maximum possible rate under TCP
advantages

HTTP / TCP passes more easily through firewalls
network infrastructure �CDNs and Routers) are optimised for TCP

drawbacks
fill rate fluctuates due to TCP congestion control, retransmissions (need to ensure in-order)
larger playout delay required

Voice Over IP (VoIP)

higher delays are noticeable, impairs interactivity
� 150ms: good, � 400ms: bad
includes application level delays

network loss: IP datagram lost due to network congestion
delay loss: IP datagram arrives too late for playout (just discard)

typically use UDP

data loss over 10% makes conversation unintelligible
modern networks rarely have data losses � 10%, so this isn't really an issue

only sends chunks when during talk spurts (vs silent periods); 20ms chunks at 8Kbytes / second: 160 bytes of data
application-layer header added to each chunk: chunk + header is then encapsulated into UDP or TCP segment
packet lengths are �20ms (fraction of a syllable!�; low to minimise impact of packet loss, at a tradeoff for efficiency

FIXED DELAY PLAYOUT

receiver attempts to playout each chunk exactly  ms after chunk was generated
if chunk has timestamp , play at 
if chunk arrives after : discard
no value of  is optimal

larger : less packet loss

-sender window see "Sawtooth"

-> keep inc. window size

inc. Window size
-> until loss occurs

a
*

·iiiiiiiie



smaller : better interactive experience
estimate network delay, adjust playout delay at beginning of each talk spurt

silent periods compressed and elongated (audio might feel sped up, or slowed down)
chunks still played out every 20ms during talk spurt

adaptive playout delay: EWMA �Exponentially Weighted Moving Average)
delay estimate after th packet = ,  is time received,  is timestamp (time sent),  is small constant
(e.g. 0.1�
estimate of average deviation of delay after th packet = 
calculated for every received packet, but used only at start of talk spurt: playout-time for th packet =  (so 

)

every chunk has �1� sequence number & �2� timestamp (implemented in application layer)

Forward Error Correction (FEC)

Using ACK / NAK is too slow because one RTT is too slow!

SIMPLE FEC

for every group of  chunks
create redundant chunk by XOR-ing  original chunks
send  chunks (including this redundant chunk)

can reconstruct original  chunks if at most one lost chunk, lost chunk � XOR of everything that was received
drawback: increased bandwidth by  factor, and receiver has to wait for an extra chunk before playout

PIGGYBACK SCHEME

Send lower resolution audio stream as redundant information, i.e. nominal stream PCM at 64kbps, but redundant stream GSM at 13kbps.

non-consecutive loss: receiver can conceal loss

INTERLEAVING

no redundancy overhead, but increases playout delay (need wait for more chunks), even without error

HTTP Streaming

Video on Demand �VoD� video streaming increasingly uses HTTP streaming. Can just GET the whole video file, but wasteful because
requires a large client buffer. Also, cannot have different encoding of videos to account for variation in device and network bandwidth.

Most VoD uses either DASH or Apple's HLS �HTTP Live Streaming).

DASH

Dynamic, Adaptive Streaming over HTTP.

Server
divides video file into multiple chunks
each chunk stored and encoded at different rates
manifest file �Media Presentation Description � MPD�� provides URLs for different encodings

Client
periodically measures server-to-client bandwidth
consults manifest to request one chunk at a time

chooses maximum coding rate sustainable for current bandwidth � Adaptive Bitrate Algorithm �ABR� (user can override this)
can change coding rates at different points in time

Client determines

when to request chunk, to avoid buffer starvation & overflow
what encoding rate to request
where to request chunk (picker closest URL server that has the highest availability)

Pros & Cons of DASH

pros
server is simple: no state to maintain
no firewall problem because HTTP
standard image web caching works

cons
DASH is based on media segment transmissions, typically 2�10 seconds in length
by buffering a few segments at the client side, DASH cannot support low latency for interactive two-way applications �Zoom calls)

Content Distribution Networks (CDNs)

-2!ts ↳ send
11 A ADI

A recvI RA LAAc-
ADA A AA play

try to keep constantgap

1DE B5...

:



 single large mega-server (doesn't scale!�
single point of failure, and network congestion
potentially long path to distant clients
multiple copies of videos over outgoing link

 store / serve multiple copies of videos at multiple geographically distributed sites �CDN�
enter deep: push CDN servers deep into many access networks (typically at ISPs, close to users)
bring home: smaller number �10's) of larger clusters in IXPs near, but not within access networks

Misc

TCP / UDP Segment � TCP / UDP Header � Data
IP Datagram � IP Header � Segment
Link Layer Frame = encapsulation of IP datagrams in header + footer
Packet = no strict definition (so, it's all of these)

Fin


