
Jin Wei CS3211 Finals Notes

Concurrency vs Parallelism

Parallelism ⊆ Concurrency

Require hardware for true concurrency.

Processes vs Threads

Threads share the address space of the process (* still need to synchronise).

Race Condition, Data Race

R�� C��������

Depends on relative ordering of the execution. Not always undesirable.

Invariants that are broken during an update of a data structure is also referred to as a race condition. This is normally bad!

Lifetime issues:

D��� R��

Data race for two accesses to a single memory location from separate threads (sharing)

Undefined behaviour (literally anything can happen)! Always undesirable.

Avoid using critical section, using locks, ordered atomics, transactional memory, ...

Program Execution

Concurrent Data Structures

Multiple threads can access the data structure concurrently, performing the same or distinct operations. Every thread sees a self-

consistent view of the data structure.

processes are expensive to create

overhead of syscalls

all data structures must be allocated, initialise, copied

inter-process communication is costly

overhead of syscalls through OS

user-level threads

mapped onto kernel threads

POSIX threads are 1�1 to kernel threads

kernel threads

dangling pointers

random memory corruption - due to reading inconsistent values from a partial update

double free, e.g. two threads pop the same value and both delete it

thread outlives the data it accesses

no enforced ordering between accesses (no ordering)

and one or both are not atomic (no ordering)

and one or both are writes (mutation)

Compilation and linking (done by compiler - gcc, g++, clang)

Preprocessor: replaces preprocessor directives (#include and #define)

Compiler: parses pure C++ code into assembly

Assembler: assembles assembly into machine code

Linker: produces the final compilation binary from the object files produced

Loading

usually OS specific

Execution

coordinated by OS

program gets access to system resources: CPU, memory, devices, ...

Constructors and destructors require exclusive access to the data structure.

Invariants

* use invariants to reason about correctness

Protect with mutex

Blocking Data Structures

Uses blocking constructs: mutexes, condition variables and futures

Execution of the thread is suspended until the block is removed (e.g. mutex unlocked, cond_var notified, future is done)

Non-blocking Data Structures

Does not use blocking constructs: instead, uses spin-lock, atomics

2 definitions of completed:

Pros:

Cons:

Classic Synchronisation Problems

No data is lost or corrupted

All invariants are upheld

No problematic race condition

ensure that no thread can see a state where the invariants are broken

ensure invariants are not broken even when there are exceptions

Forces serialisation, try to minimise these regions.

Lock at an appropriate granularity, e.g. per-node instead of whole-data-structure

Possibly use shared mutexes (allows concurrent reads)

Obstruction-free ("progress if no interference"): if all other threads are paused, then any given thread will complete its

operation in a bounded number of steps

Lock-free ("someone makes progress"): if multiple threads are operating on a data structure, then after a bounded number of

steps, one of them will complete its operation

allows individual threads to starve, but guarantees system-wide throughput

more than one thread can access the data structure concurrently

Wait-free ("no one ever waits"): every thread operating on a data structure will complete its operation in a bounded number

of steps, even if other threads are also operating on the data structure

Wait-free => Lock-free

avoids lock-free's problem of a thread starving

Very hard!

�. if the function returns

�. if its effects become visible

high concurrency: some thread makes progress with each step

robustness

if a thread dies halfway, it won't affect the data structure

cannot block threads from accessing the data structure

livelocks are possible

decreases actual performance (even though the time each thread spends waiting has been reduced)

atomic operations are slower

memory content + write propagation

cache ping-pong with multiple threads accessing the same atomic variables

false sharing

producer consumer problem

reader writer problem

(reusable) barrier

all threads must stop at this point and wait until all other threads reach this barrier

Reusable Barrier

C++

C++ Memory Model

dining philosophers

sleeping barber / barbershop

int expected;
std��counting_semaphore turnstile{0};
std��counting_semaphore turnstile2{1};

void arrive_and_wait() {
 {
 std��scoped_lock lk{mu};
 count��;
 if (count �� expected) {
 �� close waiter turnstile
 turnstile2.acquire();
 �� let everyone into critical section
 turnstile.release(expected);
 }
 }

 turnstile.acquire();

 {
 std��scoped_lock lk{mu};
 count��;
 if (count �� 0) {
 �� close turnstile to reset barrier
 turnstile.acquire();
 �� let waiters through
 turnstile2.release(expected);
 }
 }

 turnstile2.acquire();
}

func New(expected int) *Barrier {
 var wg sync.WaitGroup
 var wg2 sync.WaitGroup

 wg.Add(expected)
 wg2.Add(expected)

 return &Barrier{
 wg: wg,
 wg2: wg2,
 }
}
func (b *Barrier) Wait() {
 b.wg.Done()
 b.wg.Wait()
 �� now all threads have arrived

 �� reset barrier
 b.wg.Add(1)
 b.wg2.Done()
 b.wg2.Wait() �� wait for barrier to be fully reset

 b.wg2.Add(1) �� reset wg2
}

A�-�� ���

Only the observed behaviour needs to be correct.

C++ compiler can do anything as long as:

A program with undefined behaviour can do anything.

A������

<atomic> header, std��atomic<T> value

Used to enforce modification order

M����������� O��� (���� ��� ��������)

Once a thread has seen a particular entry in the modification order:

All threads must agree on the modification order of each individual object, but not the relative order of operations on separate

objects.

If the hardware doesn't support the consistency level, the compiler must still guarantee it (might end up being more expensive).

S�����-����

Within a thread, A can be sequenced-before B.

If A is sequenced-before B, evaluation of A must finish before evaluation of B starts.

S���������� ����

Occurs between atomic load and store operations.

Synchronises two threads.

S����� ������-����

Regardless of threads, A simply happens-before B if any are true:

S������� ������-����

Regardless of threads, A strongly happens-before B if any are true:

Informally: A appears to be evaluated before B in all contexts.

* V����� ��� �����

The write A is seen by read B if:

order of accesses (reads + writes) to volatile objects stay the same, i.e. they are not reordered with respect to other volatile

accesses

at program termination, data written to files is exactly the same as intended

prompting text sent to interactive devices is shown before program waits for input

subsequent reads from the thread must return the same or later values in the order

subsequent writes from the thread must occur later in the modification order

std��memory_order_seq_cst

can find a total ordering (for that particular object) equivalent to a sequential program

std��memory_order_acquire , std��memory_order_release , std��memory_order_acq_rel
no total ordering, but has synchronises-with

std��memory_order_relaxed

no synchronises-with; has happens-before; has monotonic reads

A is sequenced-before B

or A synchronises with B

or transitive: A -> C, C-> B => A -> B

A is sequenced-before B

or A synchronises with B, and both are sequentially consistent

or A is sequenced-before X, X simply happens before Y, and Y is sequenced-before B

or transitive: A -> C, C-> B => A -> B

A happens-before B

and there is no other side effect "between them" (between in terms of happens-before)

C����� ��� S��� P�����

ABA P�����

A location is read twice, has the same value for both reads, thus, it concludes that nothing happened in-between.

BUT, another thread could have interleaved, did some work, then reset the value back. Especially a problem because addresses

might be reused!

Compare the object (Node*, uintptr_t) (where uintptr_t is some unique generation counter) instead of just Node* .

U� ���� ��

Pointer points to memory that has been freed.

Solutions:

Compiling C++ Code

Remember to pass the flag -std=c++20 and enable POSIX threads (-pthread) when compiling your code. Other useful flags are:

D������� A����� P���

compare_exchange_weak VS compare_exchange_strong

_weak may spuriously fail (sometimes fail even if value �� old_value)

_strong won't spuriously fail but is more expensive

use _strong only if computation of new_value is more expensive

int old_value = value.load();

while (true) {
 int new_value = old_value + 5;
 �� be careful of the ABA problem!
 if (value.compare_exchange_weak(old_value, new_value)) {
 return true; �� success
 }
 �� failed, keep looping
}

recycle objects

never free anything, i.e. leak all the memory

mark objects for deletion while there are threads in functions that could read the objects; free all objects when no one is

trying to read them

use reference counting, i.e. shared_ptr

use hazard pointers

each thread keeps a list of objects that it is modifying

these objects cannot be modified / freed by anyone

-O3: Enable optimisations

-g: Enable debugging symbols

-Wpedantic -Wconversion -Wall -Werror: Enable a reasonable set of warnings

-c: Compile to object file instead of executable (useful for code snippets)

-S: Compile to assembly

-fsanitize=address: Compile with AddressSanitizer

-fsanitize=thread: Compile with ThreadSanitizer

-fsanitize=memory: Compile with MemorySanitizer (only works on clang)

clang�� -g -std=c��20 -pthread -O3 \
 -Wpedantic -Wall -Wextra -Wconversion -Werror \
 queue.cpp main.cpp \
 -o main

�. Run Valgrind memcheck

�. Run ThreadSanitizer (TSan)

�. Run AddressSanitizer (ASan)

�. Run Helgrind

Rule of 3

If you need a custom destructor, copy constructor or copy assignment operator, you probably need all 3.

Rule of 5 = Rule of 3 + Move Operations

NOTE: when a class only defines a move stuff, but not copy stuff => it can only be moved and not coped (e.g. std��thread and

std��unique_ptr)

C++ Ownership

Owner is an object containing a pointer to an object allocated by new for which a delete is required.

Every object should have exactly one owner. Only the owner should destruct the data!

RAII - Resource Acquisition is Initialisation

C++ L�����

Lambda Expressions (Lambdas)

C++ References, Pointers

std::thread

get_id() to identify a thread

if join() and detach() are not called on the thread, main function will throw an exception!

binds the life cycle of a resource (e.g. fd, socket, ...) to the lifetime of an object

alloc in constructor

dealloc in destructor

Begins when:

storage is obtained

initialisation is complete (constructor call is done)

Ends when:

if non-class type: object is destroyed

if class type: destructor call starts

storage is released, or reused by an object that is not nested within it

Lifetime is equal to or nested within the lifetime of its storage

If the lifetime of a reference outlives the lifetime of the object, it is a dangling reference (pointing to an invalid object)

�� lambda capture expressions
�� & �� capture by reference
�� = �� capture by value
�� this �� must be after &, =
cond.wait(lk, [=, this]{ return 4; })

pointers

creates a new variable (the value is the address of the other variable)

new address, different from the original variable

can be reassigned

can have null value

can be used to "mutate" the original variable when passed into a function

references

just an alias to a variable (nothing new is created!)

shares the same address as the original variable

cannot be reassigned

cannot be null

can be used to "mutate" the original variable when passed into a function

does not copy the object

join() must be called exactly once

use joinable() to check

detach() : take note of local variables passed into the thread (lifetime issue)

Use std��thread:hardware_concurrency() to obtain the number of threads. Don't run more threads than the hardware can

support, this is called oversubscription (for CPU-bound tasks). Context switching will decrease performance. NOTE: you might

need to keep one thread for the master process.

Locks & Condition Variables & Pointers

Avoiding deadlock:

Some common patterns:

L����

std��thread is movable, but not copyable

std��thread synchronises-with on creation and joining

�� start a thread: using a function
void do_some_work();
std��thread t(do_some_work);

�� start a thread: using a function object
class background_task {
public:
 void operator()() const {
 do_something();
 }
};
background_task f;
std��thread t(f); �� works
std��thread t(background_task()); �� DOES NOT works
std��thread t((background_task())); �� works
std��thread t{background_task()}; �� recommended

�� start a thread: using a lambda expression
std��thread t([]{ �� works
 do_something();
});

��� passing variables

�� pass by value copies the string
void f(int i, std��string const& s);
std��thread t(f, 3, "ello"); �� ok

char buffer[1024];
populate the buffer here
std��thread t(f, 3, buffer); �� �� buffer might go out of scope before it is converted to std��string

std��thread t(f, 3, std��string(buffer)); �� ok: explicitly convert �� placed on `general store`

void g(some_type& data);
std��thread t(g, std��ref(data)) �� ok: explicitly cast to general store

Avoid nested locks (use std��lock to lock multiple mutexes)

Avoid calling user-supplied code while holding a lock

Acquire locks in the same fixed order

hand-over-hand locking

std��mutex mu - must be unlocked in the same thread!

mu.lock()

mu.unlock() - must call on every path (including exceptions!)

std��shared_mutex mu (extension of std��mutex that allows concurrent reads)

mu.lock() , mu.unlock() , mu.lock_shared() , mu.unlock_shared()

std��lock_guard<std��mutex> lk{mu}

RAII wrapper around mutex - acquires ownership of the mutex

std��lock_guard lk{mu, std��adopt_lock} - steals ownership of the lock (won't lock again)

std��unique_lock<std��mutex> lk{mu}

can be deferred (and locked with std��lock later on): std��unique_lock lk {mu, std��defer_lock}; std��lock(mu);

C�������� V�������

While waiting, a condition variable can check the condition any number of times.

The waiting thread can spuriously wake up to reacquire the mutex to check the condition.

S���� P������

B������

Go

Go channels internal design: https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub

Channels = thread-safe MPMC queue

select psuedo randomly picks the case to avoid starvation.

Communicating Sequential Processes - CSP

Safe Concurrency

movable to another unique_lock: std��unique_lock lk1{mu}; std��unique_lock lk2{lk1};

std��lock(mu1, mu2, ���) - lock multiple locks with a deadlock avoidance algorithm

std��scoped_lock<std��mutex, std��mutex> lk{mu1, mu2} - "strictly superior" version of std��lock_guard
RAII wrapper around std��lock

std��binary_semaphore mu{0} - can be used across threads

std��condition_variable cond - only for std��mutex
std��unique_lock lk{mu} - use a unique_lock first (unlock method is required)

cond.wait(lk, []{return is_ready();}) - waits until is_ready() returns true

while (!is_ready()) cond.wait(lk) - equivalent alternative

cond.notify_one() , cond.notify_all()

cond.wait() , cond.wait_for(lk, duration, predicate) (predicate or duration is up), cond.wait_until(lk,
end_time, predicate) (predicate or end time is reached)

std��condition_variable_any cond - for any mutex-like objects

std��shared_ptr<T> data{std��make_shared<T>(std��move(value))}

uses reference-counting

destroys the object when reference == 0

note: uses copy-semantics

note: the object inside is not thread-safe

note: use std��weak_ptr to avoid circular references (objects can never be deallocated)

std��unique_ptr<T> p{new T}

std��weak_ptr<T> ptr{std��make_shared<T>(���)} - smart pointer that holds a weak reference to an object managed by

std��shared_ptr (must be converted to a std��shared_ptr to access the references object)

ptr.lock() - returns a std��shared_ptr object

std��barrier b{3} - reusable

associated with a thread (each thread can only call arrive once)

b.arrive_and_wait() , b.arrive() , b.wait()

std��latch l{3} - NOT reusable

associated with an "item" (threads can call arrive multiple times)

note: the number is of type std��ptrdiff_t

std��atomic_thread_fence(std��memory_order_acquire) - pair with an acquire in another thread

An atomic_thread_fence with memory_order_release ordering prevents all preceding reads and writes from moving past

all subsequent stores

Useful for when there aren't any atomic writes

concurrency: structure a program by breaking it into pieces that can be executed independently

communication: coordinate the independent executions

Immutable data

Data protected by confinement

https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub

Goroutine Scheduling

runtime multiplexes goroutines onto OS threads with automatic M:N mapping

G (goroutine), M (OS thread), P (CPU process)

concurrency is decoupled from parallelism!

Goroutine is a special class of coroutine (concurrent subroutine)

Each P has:

Channel Blocking Rules

Operation Channel State Result

Read nil block

open and not empty Value, true

open and empty block

closed ZeroValue, false

write only compilation error

write nil block

open and full block

open and not full writes value

closed panic

receive only compilation error

close nil panic

open and not empty closes channel; reads succeed until channel is drained (then, ZeroValue is returned)

open and empty closes channel; reads return ZeroValue

closed panic

receive only compilation error

Iterating over a channel (using x �� range ch) only ends when the channel is closed.

Ad-hoc confinement: data is modified only from one goroutine, even though it is accessible from multiple goroutines

not very good, requires static analysis (compiler doesn't help)

Lexical confinement: restrict the access to shared locations

expose only the reading / writing handle of the channel (compiler can type check)

expose different slices of the array to different goroutines

recall that slicing a slice is basically free (data isn't copied!)

when a goroutine blocks (e.g. because of a syscall), other goroutines are not blocked

go's runtime can suspend goroutines (preemptable)

Goroutines are really cheap compared to OS threads

couple of kilobytes, grows when needed

prefer finer grain concurrency

Goroutines are not garbage collected!

Go runtime will transfer data from the stack to the heap if a reference to the data is passed to another goroutine

there is no guarantee on whether a particular data is on the stack or the heap

its own decentralised work queues (deques)

centralised queue has problems with locality and imbalances

at a fork point, add tasks to the tail of deque associated with the thread

when thread is idle, steal work from the head of some other P's deque

at a join point that cannot be realised yet (the synchronised-with goroutine has not completed), pop work off tail of own

deque

�� psuedo-randomly selects any channel with an item
select {
case �� c:
 ���
case �� time.After(1 * time.Second):

Channel Ownership

Not enforced by the compiler, but recommended to follow these rules. Utilise unidirectional channels (read-only, write-only) when

possible for compiler to assist.

Single owner should:

Multiple consumers should:

To avoid goroutine leaking: the owner should be responsible for ensuring that the goroutine can / will stop.

Go Memory Model

G� H����� B���

Within a goroutine, process order is maintained (sequenced before).

Execution order observed by different goroutines are different.

To guarantee that a particular write w is read by a read r:

Happens before = sequenced before (process order) + synchronised before

G� S���������� B���

Go Patterns / Channel Patterns

C��������

 ���
}

instantiate the channel

perform writes

close the channel

pass ownership to another goroutine

^ only expose the channel to consumers via a reader channel

know when a channel is closed

responsibly handle blocking for any reason

w happens before r

all other writes to that variable either happens before w or after r

go statement is synchronised before the goroutine's execution begins

exit of a goroutine is not synchronised before anything

a send on a channel is synchronised before the completion of the corresponding receive

closing of a channel is synchronised before a receive that returns a zero value (because the channel is closed)

receive from a unbuffered channel is synchronised before send on the channel

k-th receive on a channel with capacity C is synchronised before (k+C)-th send from that channel completes

otherwise, there's "no space" in the buffer to send

Serialiser

if in-order: forward it

if not: buffer and send when it is supposed to be sent

Fan-in (necessary for centralising results), fan-out (useful for distributing intense work to many threads)

difficult to handle fan-in if there's dependencies

fanout should use runtime.NumCPU() number of goroutines.

Higher Order Channels

channel of channels

Pipelining

each stage is a group of goroutines running the same function

in each stage, the functions take input from upstream via inbound channels, then send the results downstream via

outbound channels

useful for resource-constrained parallelism while maintaining separation of concerns

for-select

ad-hoc confinement: data is modified only from one goroutine, but accessible from multiple

requires static analysis to ensure safety

Go Stack vs Heap

As of Go 1.17, Go runtime will allocate the elements of slice x on stack if the compiler proves they are only used in the current

goroutine and N <= 64KB:

And Go runtime will allocate the array y on stack if the compiler proves it is only used in the current goroutine and N <= 10MB:

Then how to allocated (the elements of) a slice which size is larger than 64KB but not larger than 10MB on stack (and the slice is

only used in one goroutine)?

Just use the following way:

In fact, we could allocate slices with arbitrary sum element sizes on stack.

Changing 500 to 512 makes the program crash.

https://stackoverflow.com/a/69187698

Goroutine Scheduler: Work Stealing

Rules:

Rust

Two goals:

lexical confinement: restricts access to shared locations

e.g. expose only read or write handles of channel

e.g. expose only array slices

var x = make([]byte, N)

var y [N]byte

var y [N]byte
var x = y[:]

const N = 500 * 1024 * 1024 �� 500M
var v byte = 123

func createSlice() byte {
 var s = []byte{N: 0}
 for i �� range s { s[i] = v }
 return s[v]
}

G: goroutine (task)

M: thread

maintains a local runnable queue of Gs

P: processor

there is a global runnable queue of Gs

sometimes (with a certain probability): check the global runnable queue

if not found: check local queue

if not found:

try to steal from other Ps (takes half the tasks)

if not, check global runnable queue

if not found, poll network

Safety in systems programming

systems programming languages: C / C++ / Fortran

Painless / fearless concurrency

https://stackoverflow.com/a/69187698

Strong safety guarantees: no segmentation faults, no data races, expressive type system

Rust Memory Safety

Mutating aliased pointers (pointers that point to the same memory, i.e. element + whole array) is a problem. Rust avoids this

through borrow checking (many shared borrows, 1 mutable borrow / owner)

Data races are prevented because sharing + mutation is prevented.

move keyword: closure takes ownership of the values it uses

Rust references = C++ pointers (with some asterisks)

Rust analyses lifetime with usage of the variable. The lifetime of a variable ends when it is last used. (live-variable analysis)

Interior mutability

U��������

Mutex & Reference Counting & Atomics

without performance compromise: no garbage collector and runtime (runs directly on hardware)

same level of performance as C / C++

Ownership does not allow aliasing!

Immutable borrow allows aliasing, but no mutation

Deep copying of data is explicit using clone()

note: C++ copy constructor does a deep copy

Ownership prevents double-free

The owner frees

Borrowing prevents use-after-free

fn main() {
 publish(&book);
}

�� immutable borrow (shared borrow)
�� book is a immutable reference
fn publish(book: &Vec<String>) { ��� }

�� mutable borrow (only one mutable borrow is allowed at one time)
fn publish_mut(book: &mut Vec<String>) { ��� }

rust references are never invalid, i.e. never null

always safe to dereference!

rust variables cannot be read before initialisation

note: C++ throws a warning

deadlock, livelock, etc

cannot be detected at compile time

some memory leaks

rust only solves some memory leaks

circular references can still leak memory

https://tiemoko.com/blog/blue-team-rust/

Reference counting Rc<T> - Rc��new(vec![1,2,3])
single thread

Atomic reference counting Arc<T> - Arc��new(vec![1,2,3])

allows shared (immutable!) references, can be used across threads

Arc��clone(&data) where data is an Arc<T>

Mutex<T> - Mutex��new(0)

usually use with Arc<T> : Arc��new(Mutex��new(0))
clone it, then, move it into spawned thread

let data = Arc��new(Mutex��new(0));

let mut data = data.lock().unwrap();

*data += 1;

https://tiemoko.com/blog/blue-team-rust/

T�����

Multi-Producer, Single-Consumer FIFO Queue

Rust Libraries

C�������

R����

Data-parallelism library, similar to OpenMP (but not with compilation directives)

AtomicI32 , AtomicU32 , ... (not generic!)
let number = AtomicUsize��new(10);

let prev = number.fetch_add(1, SeqCst);

number.load(SeqCst);

number.store(2, SeqCst);

let prev = number.swap(2, SeqCst);

ordering: SeqCst, Release, Acquire, AcqRel, Relaxed

Semaphore
let sem: Semaphore��new(1);

let _lk = sem.acquire(); - RAII style acquire

name cannot be _ to avoid it being dropped immediately

Send - transferred across thread boundaries

Sync - safe to share references between threads

Type T is Sync <=> &T is Send

Copy - safe to memcpy (for built in types)

let (tx, rx) = channel();
let tx2 = tx.clone();
�� rx cannot be cloned

thread.spawn(move �� tx.send(4));
thread.spawn(move �� tx2.send(5));

�� will print 4 and 5, in either order
println!("{��}", rx.recv);
println!("{��}", rx.recv);

mpsc��

scoped threads (now in std)

scoped threads can borrow non- 'static data because the scope guarantees all threads are joined at the end of the

scope

all threads spawned within the scope (that weren't manually joined) will be automatically joined before the function

returns

message passing with multiple-producer & multiple-consumer

with exponential backoff

with bounded channels

let mut a = vec![1, 2, 3];
let mut x = 0;

scope(|s| {
 s.spawn(�� {
 println!("hello from the scoped thread");
 �� can borrow `a` and mutably borrow `x` here
 dbg!(&a);
 x += a[0] + a[2];
 });
 println!("hello from the main thread");
});

thread��

use *;

�� no mutation

rayon��prelude��

Aynsc Rust

Non-blocking I/O

S��� M�������

need to maintain state for each conversation

F���� T����

do NOT sleep / block the thread!! (block the future instead)

E�������

Tokio is an executor runtime

fn sum_of_squares(input: &[i32]) �� i32 {
 input.par_iter()
 .map(|i| i * i)
 .sum()
}

�� mutation
fn increment_all(input: &mut [i32]) {
 input.par_iter_mut()
 .for_each(|p| *p += 1);
}

requires multiplexing of sockets

using epoll syscall (requires support from OS!)

Async functions have no stacks (also called stackless coroutines)

Executor thread still has a stack (but not used to store state when switching between async tasks)

All states are contained in the Future

Rust bans recursion in async functions

Future returns needs to have a fixed size known at compile time

the size is the union of all the possible states

Not technically impossible to implement, but it isn't supported

Nearly optimal in terms of memory usage + allocations

lower overhead compared to hand-written non-assembly code

zero cost abstractions: abstraction layers disappear at compile time (don't exist at runtime)

epoll �� [7, 12, 15]

read(7) �� 0101010011��� (more data but we return early)
read(12) �� 0101010011���
read(15) �� 0101010011��� X (no more data to read from fd 15)

using Futures (JavaScript uses Promises)

Futures oversees a specific operation and its state (not the steps!)

execution is done by the executor thread

represents a value that will exist sometime in the future

Event loop = runtime for Futures

keeps polling Future until it is ready

user-space scheduler for futures

can have one or more threads polling from the event loop

executor thread should call poll(self, ctx Context) on the Future to init it

ctx includes a wake() function which will wake up the executor that polled (implemented using syscalls)

after the executor is woken, it can use ctx to see which Future can be polled again

will run code until it can no longer progress

if the future is done, returns Poll:Ready(T)

if the future needs to wait, return Poll��Pending

responsible for calling poll() on futures -> otherwise, no progress is made!

if no futures can make progress, the executor goes to sleep until it is woken with wake()

F���� C����������

.await can only be called in an async function or async block

let a, b, ��� = tokio��join!(future1, future2, ���) - join macro that joins all the (variable number of) futures provided

A���� M��� F�������

tokio��main macro sets up the executor and polls the future returned from the main function.

W�� �� �� A�����

A���� �� ���� ��������

can be single-threaded or multi-threaded

so, shared data must be protected

�� bad example
let future = placeOnStove(meat)
 .then(|meat| cookOneSide(meat))
 .then(|meat| flip(meat))
 .then(|meat| cookOneSide(meat));

need to pass variables to every function in the chain even though we only need it at the very end

�� use async keyword
async fn addToInbox(email_id: u64, recipient_id: u64) �� Result<(), Error> {
 �� this sequentially computes this 4 steps
 �� use "join" to do things in parallel
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
 �� .await waits for a future and gets the value
}

not yet started (future is created, but not yet poll() -ed)

awaiting for loadMessage

awaiting for get_recipient

awaiting for addToInbox

future has completed

can be destructed into the results

stdlib version of join! is still in nightly

��tokio��main]
async fn main() {}

extremely high degree of concurrency

just use threads if the number of tasks is small

primarily I/O bound

context switching is extensive only if you're using a bit of the time slice

aka I/O bound stuff

CPU bound code would prevent the executor from running other tasks

Python

still fairly new

single-threaded :/

executor and Futures are separate

possible to optimise / tune them separately in the future!

JavaScript

similar concept to Rust, but less efficient because of dynamic memory allocation

Go

goroutines are asynchronous tasks, but not stack-less!

uses resizable stacks, because Go is garbage collected

https://reberhardt.com/cs110l/spring-2021/

C10K problem (handling 10 thousand network connections): https://en.wikipedia.org/wiki/C10k_problem

Checking Concurrent Programs

Model Checking / Formal Methods

once it's ok, then write the code

Model Checkers for Concurrent Programs

TLA+ (TLC) - T������ L���� �� A������+

Proposed by Leslie Lamport in 1999

C++20

just got stack-less coroutines (super new)

build a mathematical model using a special Domain Specific Language (DSL)

check the model for problems (manual or automatic)

are all the constraints met?

does anything unexpected happen?

does it deadlock?

why?

check things make sense before starting the (costly) implementation

prove certain properties for existing code

aggressive optimise the code without compromising correctness

pros & cons

pros

rigorous

verify all traces exhaustively

produce a system run that violates the requirement

cons

the specification used might be faulty

tedious in coming up with a complete specification

might be too complex

time consuming

T: temporal (time)

L: boolean logic

A: actions (state machines)

+: (extra stuff)

focuses on temporal properties

good for modelling concurrent systems + distributed systems

can't generate code

uses "simple mathematics" (because engineers can't do math)

finds all possible states up to some number of steps

examines the states for violations of certain invariances, e.g. safety (bad things won't happen), liveness (good things

eventually happen)

checks all possible concurrent interleaving!!

�� TLA definition
operator(a,b,c) �� (a �� b) �� (a �� ~c)

�� C equivalent: (a �� b) �� (a �� !c)

�� `Next` transitions `state` from "hello" to "goodbye" (`state'`)
Next �� state = "hello" �� state' = "goodbye"

https://reberhardt.com/cs110l/spring-2021/
https://en.wikipedia.org/wiki/C10k_problem

all variables must be accounted for in an action

UNCHANGED x is known as stuttering

Properties

TLA+ can determine if these properties hold

Set Theory

Can be used to define concurrency, e.g. multiple producers (in producer-consumer problem)

C�� P���� A��������

A���� (����� �������)

https://en.wikipedia.org/wiki/TLA%2B

Distributed System Challenges

Stuff Implemented in Class

var x = 1;
x = 2;
x = 3;

Init �� x=1
Step1 �� x=1 �� x'=2
Step2 �� x=2 �� x'=3
Done �� x=3 �� UNCHANGED x �� required to prevent deadlock
Next �� Step1 �� Step2 �� Done

�� overall specification that guarantees always Next or stutter (when in Init)
�� note: �� (not \/)
Spec �� Init �� [](Next �� UNCHANGED x)
Spec �� Init �� [][Next]_x �� equivalent syntax
Spec �� Init �� [][Next]_x �� WF_x(Next) �� with "weak" fairness

�. Always true

[] (x > 0)

�. Eventually true

�� (x = 2)

�. Eventually always (eventually true + stays there)

��[] (x = 3)

�. Leads to (if it becomes LHS, eventually will be RHS)

(x=2) �� (x=3)

�� define a set
{1,2,3}

�� define a set by predicate p
{e \in S : p}

�� for all `e` in `S�, predicate `p` is true
\A e \in S : p

�� exists `x` in `S� where predicate `p` is true
\E x \in S : p

generates oCaml, Haskell, Scheme

good for interactive proof methods

focuses on relational logic

good for modelling structures

no global clock / ordering of events

CAP theorem (consistency, availability, partition tolerance)

https://en.wikipedia.org/wiki/TLA%2B

io_uring (2023 PYP)

concurrent queue with coarse-grained mutexes (tutorial 1)

lock-free (non-linearisable) MPMC queue (tutorial 4)

non-linearisable => cannot create a serial ordering of the operations on the queue

push , try_pop

lock-free stack (tutorial 4)

struct Request {
 int client_fd;
 data_t data;
 res_t result;
}

class ConcurrentRing {
private:
 LockFreeQueue<Request> queue;
 std��counting_semaphore write{size};
 std��counting_semaphore read{0};

public:
 void submit_request(Request req) {
 write.acquire();
 queue.push(req);
 read.release();
 }

 Request retrieve_request() {
 read.acquire();

 std��optional<Request> req;
 while (true) {
 req = queue.try_pop();
 if (req) break;
 }

 write.release();
 return req;
 }
}

�� point D (init)
�� W worker threads
for (int i = 0; i < W; i��) {
 std��thread([&]() {
 while (true) {
 Request req = SQ.retrieve_request();
 req.process();
 CQ.submit_request(req);
 }
 });
 std��thread([&]() {
 while (true) {
 Request req = CQ.retrieve_request();
 send(req.client_fd, req);
 }
 });
}

�� point E (on receiving a client)
std��thread([&]() {
 data_t data = read(client_fd);
 while (data) {
 Request req{client_fd, data};
 SQ.submit_request(req);
 data = read(client_fd);

Advantages:

 }
});

struct Request {
 conn net.Conn
 resp Response
}
struct Response {
 conn net.Conn
 resp Data
}

�� point F (init)
submitQueue �� make(chan Request)
completionQueue �� make(chan Response)

�� spawn `SIZE� worker goroutines
for i �� 0; i < SIZE; i�� {
 go func() {
 req �� ��submitQueue
 completionQueue �� req.Process()
 }()
 go func() {
 res �� ��completionQueue
 res.conn.Write(resp)
 }()
}

�� point G
go func() {
 req �� Request{conn: conn, resp: nil}
 submitQueue��req
}()

�� point H
loop {
 �� for each client
 let (stream, _) = listener.accept().await?;

 �� thread: handles incoming requests
 spawn(async move {
 loop {
 let mut buf = Vec��new();
 stream.read(&mut buf).await;
 sq_tx.send(IoOperation��Read(stream, buf)).await;
 }
 });
 ��
 spawn(async move {
 while let Some(op) = sq_rx.recv().await {
 spawn(async move {
 let res = process(op.data).await;
 cq_tx.send(IoOperation��Write(op.stream, res)).await;
 });
 }
 });
 �� thread: sending back the result
 spawn(async move {
 while let Some(op) = cq_rx.recv().await {
 op.stream.write_all(op.data).await;
 }
 });
}

tokio��

tokio��

tokio��

tokio��

Disadvantages:

Quantification:

perform computation in parallel, maximising the use of multiple cores

coding complexity

context switching

inter-thread communication

increased memory usage

measuring execution time (or speedup), compared against sequential program

