
Jin Wei CS3223 Finals

Disk Access Time

• Command Processing Time (negligible)
• Seek Time: moving arms to position disk head on track

– Average seek time: 5-6ms
• Rotational Delay: waiting for block to rotate under head

– Depends on RPM; average rotation delay = time for 1/2 revolution
– x RPM => (60Õ000)/x ms for 1 revs

• Transfer Time: time to move data to/from data surface
– n ú time for one revolution

number of sectors per track
• Access time = seek time + rotational delay + transfer time
• Response time = queueing delay + access time

B+ Tree

• Leaf nodes are doubly-linked
• Internal nodes (p0, k1, p1, ..., kn, pn)
• Order d: non-root node [d, 2d]; root node [1, 2d]
• Maximum order: 2d(#bytes of key) + (2d +

1)(#bytes of page address) Æ #bytes of page size. Solve for d

• Minimum number of leaf nodes: 2ú(d+1)i≠1 ; Maximum: (2d+1)i ;
i is levels of internal

Sorting

• Create N0 = ÁN/BË sorted runs, N pages
• Merging: B ≠ 1 pages for input, 1 for output
• Total I/O = 2N ú (ÁlogB≠1(N0)Ë + 1)
• Optimised Merging: Â B≠b

b Ê for input, b for output
• Total IO = 2N ú (ÁlogF (N0)Ë + 1), F = Â(B ≠

boutput)/binputÊ
• Sequential I/O: ÁN/bË ú (#passes) ú ((seek + rotate) + b ú (transfer))

Selection

• Full Table Scan; Index Scan; Index Intersection (combination), + RID
lookup

• Goal: reduce number of index & data pages retrieved
• Covering Index I for query Q if Q ™ I; no RID lookup; index-only plan
• Term: A op B; Conjuncts: terms connected by OR; CNF: conjuncts joined

by AND
• B+ Index I = (K1, K2, ...) matches Predicate p if (K1, ..., Ki)

is prefix of I AND only Ki can be non-equality
• Hash Index I match if equal for every attribute
• Subset that matches is primary conjuncts; Subset that covered is covered

conjuncts
• ||r||: #tuples, |r|: #pages, bd: #data records (entire tuple), bi: #data

entries
• B+ tree cost = (height of internal nodes) + (scan leaf pages) + (RID lookup)

– Can reduce I/O cost of lookup by sorting
• Hash cost = (retrieve data entries) + (retrieve data records)
• Plans: Full Table Scan, Index Scan, Intersections, Unions

– Primary: can traverse tree / hash (if not: check all leaf)
– Covered: no RID lookup
– Intersection: (retrieve leaf entries for both) + Grace-Hash Join + (re-

trieve data records)

Projection

• Remove unwanted attributes, eliminate dupes
• Sort: Extract -> Sort -> Remove Dupes (linear scan)
• Optimised Sort: Create Sorted Runs with attributes L (read N pages, write

N ú |L|
|#no of attrs) -> Merge Sorted Runs + Remove Dupes

– If B >

|fiú

L
(R)|, N0 ¥

|fiú

L
(R)|, similar as Hash

• Hash: Partition into B ≠ 1 partitions using hash function -> Remove
Dupes in partitions -> Union partitions
– Partition phase: 1 for input, B ≠ 1 for output -> remove unwanted

attributes -> hash -> flush when bu�er is full
– Dupe Elim phase: Use in-memory hash table with h’
– Partition overflow problem -> recursively apply partition until can fit

in-memory
– Approximately B >

f ú |fiú

L
(R)| to avoid partition overflow

– If no partition overflow: Partition: |R| + |fiú
L(R)|, Dupe Elim:

|fiú
L(R)|

• Indexes: Use index scan; If B+ & wanted attributes is prefix: already sorted,
so compare adjacent

Nested-Loop Join

• Smaller should be outer (R)
• Tuple-Based: For each outer tuple: check each inner tuple |R| + ||R|| ú

|S|
• Page-Based: For each outer page: check each inner page: compare tuples

within these pages |R| + |R| ú |S| (3 bu�er pages, 2 input, 1 output)
• Block-Based: read in B ≠ 2 sequential pages of R, read in page of S

one-by-one
– |R| + (Á |R|

B≠2 Ë ú |S|)
• Index-Based: for each tuple in R: search S’s index

– Assuming uniform distribution: |R| + ||R|| ú J , J = tuple search
cost

• Minimum for any join: cost of |R| + |S| with |R| + 1 + 1 bu�er pages,
store entire |R| in memory

Sort-Merge Join

• Sort both R and S, then join
• Each tuple in R partition merges with all tuples in matching S-partition
• Advance pointer pointing to smaller tuple; rewind S-pointer as necessary
• I/O cost = (Cost to sort R) + (Cost to sort S) + Merging cost; (merging cost

= |R| + |S| if no rewind, |R| + ||R|| * |S| if rewind everytime)
• Optimised (partial sorting): if B > N(R, i) + N(S, j), stop sorting,

$N(R,i) = $ total number of sorted runs of R after pass i

– I/O cost if B >

2|S|, 3 ú (|R| + |S|) => 2 for creating initial

sorted runs (one pass is su�cient), 1 for merge
– else 3 ú (|R| + |S|) + c ú |R| + d ú |S|, where c and d is number

of merge passes for R, S

Grace Hash Join (no Hybrid Hash Join)

• Split R and S into k partitions each, join these k partitions together in
probing phase
– read Ri to build hash table (build relation) - pick smaller for build

(must fit in-memory)
– read Si to probe hash table (probe relation)

• partitioning phase: 1 input bu�er, k hash bu�ers, once full, flush into page
on disk

• probing phase: 1 input bu�er, 1 output bu�er, 1 hash table; use di�erent
h’(.) and build a hash table for each partition, then, probe with S, if match,
add to output bu�er
– build R1 , probe S1 , build R2 , . . .
– once output bu�er is full, flush (don’t flush between partitions)

• set k = B ≠ 1 to minimise partition sizes
• assuming uniform hashing distribution:

– size of each partition Ri
|R|

B≠1
– size of hash table for Ri

fú|R|
B≠1 , f is fudge factor

– during probing phase, B >
fú|R|
B≠1 + 2, one each for input & output

– approximately, B >

f ú |R|

• Partition Overflow Problem: hash table doesn’t fit in memory, recursively
partition overflowed partitions

• I/O cost = 3(|R| + |S|) if no partition overflow
• I/O cost = (c * 2 + 1)(|R| + |S|) where c is number of partitioning phases

Join Conditions

• Multiple Equality-Join conditions (R.A = S.A)and(R.B = S.B)
– Index Nested Loop Join: use index on all attrs; or only on primary

conjuncts, then data lookup uncovered conjuncts
– Sort-Merge Join: sort on combinations
– Other algorithms are unchanged

• Inequality-Join conditions (R.A < S.A)
– Index Nested Loop Join: requires B+ tree index
– Sort-Merge Join: N/A (becomes nested loop join)
– Hash-Based Join: N/A (becomes nested loop join)
– Other algorithms are unchanged

Operations

• Aggregation: scan table while maintaining running information
• Group-by aggregation:

– sort on grouping attributes, scan sorted relation to compute aggregate
– build hash table on grouping attributes, maintain (group-value, running-

information)
• Index Optimisation: if have covering index, use it; avoids need for sorting

Query Evaluation

• Materialised (temporary table) Evaluation - waits for everything to be done
– operator is evaluated only when its operands are completely evaluated

or materialised
– intermediate results are materialised to disk
– may reduce number of rows

• Pipelined Evaluation - requires more memory
– output produced by operator is passed directly to parent (interleaves

execution of operators)
– operator O is blocking operator if it requires full input before it can

continue (e.g. external merge sort, sort-merge join, grace-hash join)
– Iterator Interface: top-down, demand-driven (parent calls getNext()

from child)

Query Plans

• Query has many equivalent logical query plans, which has many physical
query plans.

• Want to avoid BAD plans, not pick the best
– Ideally minimise size of intermediate results

• join-plan notation
– nested-loop: left is outer, right is inner
– sort-merge: left is outer, right is inner
– hash-join: left is probe, right is build

Relational Algebra Rules

1. Commutativity
1. R ◊ S © S ◊ R

2. R on S © S on R

2. Associativity
1. (R ◊ S) ◊ T © R ◊ (S ◊ T)
2. (R on S) on T © R on (S on T)

3. Idempotence
1. fiLÕ (fiL(R)) © fiLÕ if L

Õ ™ L ™ attrs(R)
2. ‡p1 (‡p2 (R)) © ‡p1·p2
3. fiL(‡p(R)) © fiL(‡p(fiLfiattrs(p)(R)))

4. Commutating Selection w/ Binary Ops - pushes operations down to leaf
node

1. ‡p(R ◊ S) © ‡p(R) ◊ S if attrs(p) ™ attrs(R)
2. ‡p(R onpÕ S) © ‡p(R) onpÕ S if attrs(p) ™

attrs(R)
3. ‡p(R fi S) © ‡p(R) fi S

5. Commutating Projection w/ Binary Ops
• let L = LR fi Ls , where LR ™ attrs(R) and LS ™

attrs(S)
1. fiL(R ◊ S) © fiLR

(R) ◊ fiLS
(S)

2. fiL(R onp S) © fiLR
(R) onp fiLS

(S) if attrs(p) fl
attrs(R) ™ LR and LS

3. fiL(R fi S) © fiL(R) fi fiL(S)

Query Optimisation

1. Search space
2. Plan enumeration - how to enumerate search space
3. Cost model

Query Plan Trees

• Linear if at least one operand for each join is base relation; otherwise it’s
bushy

• Left-deep if each right join is base relation
• Right-deep if each left join is base relation
• Use DP: compute optimal cost optP lan(Si) for each subset of relations

being joined

– i.e. for R on S on T , consider optP lan({R, S, T }) =
min{optP lan(R) + optP lan({S, T }), ...}

– Enhanced DP: might be worth using sub-optimal if produces sorted
order, optP lan(Si, oi), where oi captures attrs sorted (or null)

Cost Estimation

• Uniformity Assumption: uniform distribution
• Independence Assumption: independent distribution in di�erent attrs
• Inclusion Assumption: assumes all r œ R maps to some s œ S, if

||fiA(R)|| Æ ||fiB(S)||

Size Estimation

For q = ‡p(e), p = t1 · ...tn , e = R1 ◊ ...Rn

• ||q|| ¥ ||e|| ◊ �n
i=1(rf(ti)), reduction / selectivity factor

rf(ti) =
||‡ti

(e)||
||e||

• rf(A = c) ¥ 1
||fiA(R)|| by uniform

• rf(R.A = S.B) ¥ 1
max{||fiA(R)||,||fiB (S)||} by inclusion

Estimation w/ Histogram

• Equiwidth: each bucket has (almost) equal number of values
• Equidepth (* better): each bucket has (almost) equal number of tuples;

sub-ranges might overlap (can however, e.g. 1-6)
• MCV: separately keep track of top-k

Transaction Properties

• Atomicity: all or nothing (by recovery manager)
• Consistency: if each Xact is consistent, and DB starts consistent, ends

consistent
• Isolation: execution of Xacts are isolated (by concurrency control manager)
• Durability: once commit, persist (by recovery manager)

Transaction

• Tj reads O from Ti in a schedule S if last write action on O before
Rj (O) is Wi(O)

• Tj reads from Ti if Tj read some object from Ti
• Ti performs final write on O in a schedule S if last write action on O in

S is Wi(O)
– determines final state

Schedules

• VE if same read-froms & same final-writes
• VSS if VE to some serial schedule

– VSG - (Tj , Ti) if Ti reads-from Tj , or Ti does final-write
– VSG cyclic => not VSS
– VSG acyclic & (serial schedule from topo-sort is VE to S) => VSS

• Conflicting Action if
– at least one of them is write action
– and actions are from di�erent transactions

• Anomalies from Interleaving
– dirty read problem (WR)

� W1(x), R2(x)
– unrepeatable read problem (RW) => same row, di�erent value

� R1(x), W2(x), C2, R1(x)
– lost update problem (WW)

� R1(x), R2(x), W1(x), W2(x)
• CE: every pair of conflicting actions are ordered in the same way
• CSS: CE to some serial schedule (CSS => VSS) (“serialisable” = CSS)

– CSS ≈∆ CSG is acyclic
• blind write: Xact no read before it writes

– VSS & no blind writes => CSS
• cascading abort: if Ti reads from Tj and Tj aborts, Ti must abort too

for correctness
• Recoverable Schedule (essential): for every Xact T that commits in S, T

must commit after T
Õ if T reads from T

• Cascadeless Schedule: can only read from committed Xacts
• Strict Schedule (can use before-image): for every Wi(O), O is not read

or written by another Xact until Ti abort / commit
• Strict ™ Cascadeless ™ Recoverable

Transaction Scheduler

for each input action (read, write, commit, abort):

1. output action to scheduler (perform the action)
2. postpone the action by blocking Xact
3. reject and abort Xact

Lock-based Concurrency Control

• if lock request not granted, Xact is blocked, Xact is added to O’s request
queue

• 2PL => CSS: once release a lock, no more request
• Strict 2PL => strict & CSS: Xact must hold onto lock until commit / abort
• Wait-For-Graph: Ti æ Tj if Ti waiting for Tj (must remove edge)
• Timeout mechanism: when Xact start, start timer, if timeout, assume dead-

lock
• Deadlock Prevention - older Xact has higher priority (not restarted on kill)

– suppose Ti requests a lock held by Tj (Higher-Lower)
– wait-die: Ti wait for Tj , Ti suicide => may starve
– wound-wait: kill Tj , Ti wait for Tj
– if Tj dies, Ti still waits

• Lock upgrade: similar to acquiring X
• Lock downgrade: has not modified O, has not released any lock
• Phantom Read Problem: re-executes query for a search condition but ob-

tains di�erent rows due to another recently committed transaction
– can’t lock row if don’t exist => perform predicate locking instead, but

use index locking in practice for e�ciency
• Isolation Level (Dirty Read, Unrepeatable Read, Phantom Read, Write,

Read, Predicate)
• Read Uncommitted: Y, Y, Y, L, N, N
• * Read Committed: N, Y, Y, L, S, N
• Repeatable Read: N, N, Y, L, L, N
• Serialisable: N, N, N, L, L, Y
• Granularity: DB, Relation, Page, Tuple

– higher lock => lower is locked
– intention lock: must have I-lock on all ancestors

– acquire top-down
– to obtain S or IS, must have IS or IX on parent
– to obtain X or IX, must have IX on parent
– release bottom-up

MVCC - maintain multiple ver. of each object

• read-only are never blocked / aborted
• MVE if same read-from
• MVSS if MVE to some serial monoversion schedule

– monoversion: each read action returns the most recently created object
version

– VSS ™ MVSS (not other way round)
• SI: Xact T takes snapshot of committed state of DB at start of T

– can’t read from concurrent Xacts
– Concurrent if overlap start & commits
– Oi is more recent than Oj if Ti commit after Tj
– Concurrent Update Property: if multiple concurrency Xact update same

object, only one can commit (if not, may not be serialisable)
• First Committer Win (FCW): check at point of commit
• First Updater Win (FUW) - locks only used for checking (NOT lock-based)

– to update O: request X-lock on O; when commit / abort, release locks
– if not held by anyone:

� if O has been updated by concurrent Xact: abort
� else: grant lock

– else: wait for T’ to abort / commit
� if T’ commit: abort
� else: use (if not held by anyone) case

• Garbage Collection: delete version Oi if exists a newer version Oj st for
every active Xact Tk that started after commit of Ti , Tj commits before
Tk starts (aka all active Xact can refer to Oj)

• SI performs similarly to Read Committed, but di�erent anomalies; does
not guarantee serialisablity too (violates MVSS, but not detected)
– Write Skew Anomaly

� Both Xact read from initial value
– Read-Only Xact Anomaly

� A Read-Only Xact reads values that shouldn’t be possible
• SSI: keep track of rw dependencies among concurrent Xact

– Ti -rw-> Tj -rw-> Tk : abort one of them (has false positives)
– ww from T1 æ T2 if T1 writes to O, then T2 writes immediate

successor of O
� T1 commit before Tj and no Xact that commits between them

writes to O
– wr from T1 æ T2 if T1 writes to O, then T2 reads this ver. of O
– rw from T1 æ T2 if T1 reads a ver. of O, then T2 writes immediate

successor of O
• Dependency Serialisation Graph (dashed if concurrent, solid if not)

– if S is SI that is not MVSS, then (1) at least one cycle in DSG, (2) for
each cycle, exists Ti , Tj , Tk st
� Ti and Tk might be same Xact
� Ti and Tj are concurrent with Ti ≠ rw≠ > Tj
� AND Tj and Tk are concurrent with Tj ≠ rw≠ > Tk

Recovery Manager

• Undo: remove e�ects of aborted Xact to preserve atomicity
• Redo: re-installing e�ects of committed Xact to preserve durability
• Failure

1. transaction failure: transaction aborts
– application rollbacks transaction (voluntary)
– DBMS rollbacks transaction (e.g. deadlock, violation of integrity

constraint)
2. system crash: loss of volatile memory contents

– power failure
– bug in DBMS / OS
– hardware malfunction

3. media failures: data is lost / corrupted on non-volatile storage
– disk head crash / failure during data transfer

Bu�er Pool

• Can evict dirty uncommitted pages? (yes => steal, no => no-steal)

• Must all dirty pages be flushed before Xact commits? (yes => force => no
redo, no => no-force)

• in practice: use steal, no-force (need undo & need redo)
• no steal => no undo needed (not practical because not enough bu�er pages

leads to blocking)
• force => no redo needed (hurts performance of commit because random

I/O)

Log-Based DB Recovery

• Log (trail / journey): history of actions executed by DBMS - stored as
sequential file of records in stable storage - uniquely identified by LSN

• Algorithm for Recovery and Isolation Exploiting Semantics (ARIES) -
designed for steal, no-force approach, assumes strict 2PL

• Xact Table (TT): one entry per active Xact, contains: XactID, lastLSN
(most recent for Xact), status (C or U) because kept until End Log Record

• Dirty Page Table (DPT): one entry per dirty page, contains: pageID, recLSN
(earliest for update that caused dirty)

Normal Processing

Updating TT (Xact ID, lastLSN, status):

• first log record for Xact T: create new entry in TT with status = U
• for new log record: update lastLSN
• when commit: update status = C
• when end log record: remove from TT

Updating DPT (pageID, recLSN):

• when page P is updated (and not in DPT): create new entry with recLSN =
LSN (don’t update this)

• when flushed: remove from DPT

Log Records

• default: LSN, type, XactID, prevLSN (for same Xact, first points to NULL)
• update log record (ULR): pageID, byte o�set (within page), length (in bytes

of update), before-image (for undo), after-image (for redo)
• compensation log record (CLR) - made when ULR is undone: pageID,

undoNextLSN (prevLSN in ULR), action taken to undo
• commit log record
• abort log record - created when aborting Xact: undo is initiated for this

Xact
• end log record - created after book-keeping after commit / abort is done
• (simple) checkpoint log record: stores Xact table
• (fuzzy) begin_checkpoint log record: time of snapshot of DPT & TT
• (fuzzy) end_checkpoint log record: stores DPT & TT snapshots

* only ULR and CLR are redoable log records

Implementing Abort

• Write-ahead logging (WAL) protocol: do not flush uncommitted update
until log record is flushed

• need to log changes needed for undo
• to enforce, each DB page contains pageLSN (most recent log record), before

flushing page P, ensure all log records up to pageLSN is flushed

Implementing Commit

• Force-at-commit protocol: do not commit until after-images of all updated
records are in stable storage

• to enforce, write commit log record for Xact, flush all log records (not data)
• Xact is committed ≈∆ its commit log record is written to stable storage

Implementing Restart (order matters)

• Analysis phase: determines point in log to start Redo phase, identifies
superset of dirtied bu�er pool pages & active Xacts at time of crash

• Redo phase: redo actions to restore DB state
• Undo phase: undo actions of uncommitted Xacts

Analysis Phase

• init DPT and TT to be empty
• sequentially scan logs

if r is end log record:

remove T from TT

else:

add T to TT if not in TT

set lastLSN = r�s LSN

status = C if commit log record

if (r is redoable) & (its P not in DPT):

add P to DPT(pageID = P, recLSN = r)

Redo Phase

• opt cond (defn already flushed) = (P is not in DPT) or (P’s recLSN in DPT
> r’s LSN)

redoLSN = smallest recLSN in DPT

let r = log record w/ redoLSN

start scan from r:

if (r is ULR | CLR) & (not opt cond):

fetch page P for r

if P�s pageLSN < r�s LSN:

haven�t redo, so redo action

set P�s pageLSN = r�s LSN

else: because <= P�s pageLSN is OK

set P�s recLSN in DPT =

P�s pageLSN+1

at end: create end log records for Xacts with status = C, & remove from TT

Undo Phase: abort loser Xacts

init L = lastLSNs (status = U) from TT

repeat until L is empty

delete largest lastLSN from L

let r be log record for ^

if r is ULR:

create CLR r2

r2 undoNextLSN = r�s prevLSN

r2 prevLSN = r�s LSN

undo action

update P�s pageLSN = r2�s LSN

UpdateLAndTT(r�s prevLSN)

if r is CLR:

UpdateLAndTT(r�s undoNextLSN)

if r is abort log record:

UpdateLAndTT(r�s prevLSN)

def UpdateLAndTT(lsn):

if lsn is not null: add lsn to L

else: # reached first log => done

create end log record for T

remove T from TT

Simple Checkpointing

• periodically perform checkpointing: suspend normal processing, wait until
all current processing is done, flush all dirty pages in bu�er (to sync log
record & DB), write checkpoint log record containing TT, resume

• during Analysis Phase, start from begin_ LR, init with TT, DPT in end_

Fuzzy Checkpointing (no suspension)

• snapshot DPT & TT, write begin_ log record
• write end_ log record (very slow to write)
• write special master record containing LSN of begin_ to known location

(for fast retrieval) in stable storage
• during Analysis Phase, start from begin_, init with TT and DPT in end_

- --...... k

Lock -HoldIsname, name Requested IS X

I w ~xxloguajor: 's') - (area =B

S ~x x kennow forAna
als

Yc.cid=E.cid
X ~x X X

Lock Hed R,(es)
Course (DE.sid =S.sid Requested en IS IX s X

Ri(x)
I W

IS W ~r r x

11

Student S

X
~ xxx

X :"Y I Rs(X)

Enrol E IX
v ~vx X W.(X,) we(x2)

S ~ ~x
X

R>(x)

A prevism/XactI4/type/page ID) length) offset /nge) inte 13

2
I recovery ↑ID) lastism/status
page

ID recsi

