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Disk Access Time

Command Processing Time (negligible)

Seek Time: moving arms to position disk head on track

— Average seek time: 5-6ms

Rotational Delay: waiting for block to rotate under head

— Depends on RPM; average rotation delay = time for 1 /2 revolution
- xRPM => (60000)/z ms for 1 revs

Transfer Time: time to move data to/from data surface
_ p ok —tme for one revolution
umber of sectors per track
Access time = seek time + rotational delay + transfer time

Response time = queueing delay + access time

B+ Tree

Leaf nodes are doubly-linked

Internal nodes (pg, k1, P1, ---» kn, Pn)

Order d: non-root node [d, 2d]; root node [1, 2d]

Maximum  order: 2d(#bytes of key) + (2d +
1) (#bytes of page address) < #bytes of page size. Solve for d
Minimum number of leaf nodes: 2% (d+1) =1 Maximum: (2d+1) i
4 is levels of internal

Sorting

Create No = [N/ B sorted runs, N pages

Merging: B — 1 pages for input, 1 for output

Total /O = 2N * ([logB,I (No)1+1)

Optimised Merging: L j for input, b for output

Total 10 = 2N fﬁogF(No)] +1, F = (B -
boutput)/binpu J

Sequential I/O: [ N /b] * (#passes) = ((seek + rotate) + b s (transfer) )

Selection

Full Table Scan; Index Scan; Index Intersection (combination), + RID
lookup

Goal: reduce number of index & data pages retrieved

Covering Index I for query Q if @ C I;no RID lookup; index-only plan
Term: A op B; Conjuncts: terms connected by OR; CNF: conjuncts joined
by AND

B+Index I = (K1, Kg, ...) matches Predicate p if (K71, ...,
is prefix of 7 AND only K ; can be non-equality

Hash Index I match if equal for every attribute

Subset that matches is primary conjuncts; Subset that covered is covered
conjuncts

K;)

: #data records (entire tuple), b;: #data

entries

B+ tree cost = (height of internal nodes) + (scan leaf pages) + (RID lookup)

— Can reduce I/O cost of lookup by sorting

Hash cost = (retrieve data entries) + (retrieve data records)

Plans: Full Table Scan, Index Scan, Intersections, Unions

— Primary: can traverse tree / hash (if not: check all leaf)

— Covered: no RID lookup

— Intersection: (retrieve leaf entries for both) + Grace-Hash Join + (re-
trieve data records)

Projection

Remove unwanted attributes, eliminate dupes
Sort: Extract -> Sort -> Remove Dupes (linear scan)
Optimised Sort: Create Sorted Runs with attributes L (read N pages, write

L|
N * m) -> Merge Sorted Runs + Remove Dupes

- IfB > \/\w R)|, Ng = \/\WL(R)| similar as Hash

Hash: Partition into B — 1 partitions using hash function -> Remove

Dupes in partitions -> Union partitions

— Partition phase: 1 for input, B — 1 for output -> remove unwanted
attributes -> hash -> flush when buffer is full

— Dupe Elim phase: Use in-memory hash table with h’

— Partition overflow problem -> recursively apply partition until can fit
in-memory

— Approximately B >  / f * \7r2(R)| to avoid partition overflow

- If no partition overflow: Partition: |R| + |7TZ (R)|, Dupe Elim:
|77 (R

Indexes: Use index scan; If B+ & wanted attributes is prefix: already sorted,

so compare adjacent

Nested-Loop Join

Smaller should be outer (R)
Tuple-Based: For each outer tuple: check each inner tuple | R| + || R|| *
Bl
Page-Based: For each outer page: check each inner page: compare tuples
within these pages | R| + |R| * |.S| (3 buffer pages, 2 input, 1 output)
Block-Based: read in B — 2 sequential pages of R, read in page of S
one-by-one
|R|

IR+ ([5=51*1SD
Index-Based: for edch tuple in R: search S’s index
- Assuming uniform distribution: |R| 4 ||R|| * J, J = tuple search

cost
Minimum for any join: costof | R| + | S| with | R| + 1 + 1 buffer pages,
store entire |R| in memory

Sort-Merge Join

Sort both R and S, then join

Each tuple in R partition merges with all tuples in matching S-partition

Advance pointer pointing to smaller tuple; rewind S-pointer as necessary

1/0 cost = (Cost to sort R) + (Cost to sort S) + Merging cost; (merging cost

= R| + || if no rewind, |R| + |[R]| * |S| if rewind everytime)

Optimised (partial sorting): if B > N (R, i) + N (S, j), stop sorting,

$N(R,i) = $ total number of sorted runs of R after pass i

- I/Ocostif B > 4 /2|S]|,3 % (|R| + |S|) => 2 for creating initial
sorted runs (one pass is sufficient), 1 for merge

- else3 % (|R|+|S]|) +c=*|R|+d = |S|, where c and d is number
of merge passes for R, S

Grace Hash Join (no Hybrid Hash Join)

Split R and S into k partitions each, join these k partitions together in

probing phase

— read R; to build hash table (build relation) - pick smaller for build
(must fit in-memory)

- read S; to probe hash table (probe relation)

partitioning phase: 1 input buffer, k& hash buffers, once full, flush into page

on disk

probing phase: 1 input buffer, 1 output buffer, 1 hash table; use different

h’(.) and build a hash table for each partition, then, probe with S, if match,

add to output buffer

— build R1, probe S, build Ro, ...

— once output buffer is full, flush (don’t flush between partitions)

set k = B — 1 to minimise partition sizes

assuming uniform hashing distribution:

R
* B—1
— size of hash table for R; f*\R\ , f is fudge factor

- size of each partition R.

— during probing phase, B > lRI -+ 2, one each for input & output

— approximately, B > fo* \R\

Partition Overflow Problem: hash table doesn’t fit in memory, recursively
partition overflowed partitions

1/0 cost = 3(IR| + [S]) if no partition overflow

1/0 cost = (¢ * 2 + 1)(IR| + [S]) where c¢ is number of partitioning phases

Join Conditions

Multiple Equality-Join conditions (R. A = S.A)and(R.B = S.B)

— Index Nested Loop Join: use index on all attrs; or only on primary
conjuncts, then data lookup uncovered conjuncts

— Sort-Merge Join: sort on combinations

— Other algorithms are unchanged

Inequallty -Join conditions (R.A < S.A)
Index Nested Loop Join: requires B+ tree index

- Sort-Merge Join: N/A (becomes nested loop join)

- Hash-Based Join: N/A (becomes nested loop join)

— Other algorithms are unchanged

Operations

* Aggregation: scan table while maintaining running information
* Group-by aggregation:
— sort on grouping attributes, scan sorted relation to compute aggregate
— build hash table on grouping attributes, maintain (group-value, running-
information)
« Index Optimisation: if have covering index, use it; avoids need for sorting

Query Evaluation

Materialised (temporary table) Evaluation - waits for everything to be done

— operator is evaluated only when its operands are completely evaluated
or materialised

— intermediate results are materialised to disk

— may reduce number of rows

Pipelined Evaluation - requires more memory

— output produced by operator is passed directly to parent (interleaves
execution of operators)

— operator O is blocking operator if it requires full input before it can
continue (e.g. external merge sort, sort-merge join, grace-hash join)

— Iterator Interface: top-down, demand-driven (parent calls getNext ()
from child)

Query Plans

* Query has many equivalent logical query plans, which has many physical
query plans.
+ Want to avoid BAD plans, not pick the best
— Ideally minimise size of intermediate results
* join-plan notation
- nested-loop: left is outer, right is inner
- sort-merge: left is outer, right is inner
— hash-join: left is probe, right is build

Relational Algebra Rules

1. Commutativity
. RxS=SxR
2. RxS=SxR
2. Associativity
. (RXS)XT=RxXx(SxT)
2. (RxS)®mT=Rx(SxT)
3. Idempotence
I mp(rL(R) =7y, if L' C L C attrs(R)
2. apy (9pgy (R)) = 0py Apy
3. mp(op(R)) = 7L (0p(TLuatirs(p) (R)))
4. Commutating Selection w/ Binary Ops - pushes operations down to leaf

node
op(R x S) = op(R) x Sifattrs(p) C attrs(R)
2. op(R X S) = op(R) X, S if attrs(p) C
attrs(R)

3. op(RUS) =0p(R)US
5. Commutating Projection w/ Binary Ops

e let L = LR U Lg, where L C attrs(R)and Lg C
attrs(S)
L mp(RxS)=mpg(R) X mpg(S)
2. mp (R, S) = WLR(R> Xy ﬂLS(S) if attrs(p) N

attrs(R) C Lrand Lg

3. i (RUS) =7np(R)Umnp(S)

Query Optimisation
1. Search space
2. Plan enumeration - how to enumerate search space

3. Cost model

Query Plan Trees

Linear if at least one operand for each join is base relation; otherwise it’s
bushy

Left-deep if each right join is base relation

Right-deep if each left join is base relation

Use DP: compute optimal cost opt Plan (.S ) for each subset of relations
being joined

- je. for R x S x T, consider optPlan({R,S,T}) =
min{optPlan(R) + optPlan({S,T}), ...}

— Enhanced DP: might be worth using sub-optimal if produces sorted
order, opt Plan(S;, o;), where o; captures attrs sorted (or null)

Cost Estimation

« Uniformity Assumption: uniform distribution

* Independence Assumption: independent distribution in different attrs

« Inclusion Assumption: assumes all 7 € R maps to some s € S, if
[lra(R)|] < [IwB (S)]|

Size Estimation

Forq = op(e).p =t1 A ...tp,e = R1 X ...Rp
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Estimation w/ Histogram

Equiwidth: each bucket has (almost) equal number of values

Equidepth (* better): each bucket has (almost) equal number of tuples;
sub-ranges might overlap (can however, e.g. 1-6)

* MCV: separately keep track of top-k

Transaction Properties

Atomicity: all or nothing (by recovery manager)

Consistency: if each Xact is consistent, and DB starts consistent, ends
consistent

Isolation: execution of Xacts are isolated (by concurrency control manager)
Durability: once commit, persist (by recovery manager)

Transaction

T)j reads O from T; in a schedule S if last write action on O before
R;(0)is W;(O)

Tj reads from T; if T'; read some object from T7;

T; performs final write on O in a schedule S’ if last write action on O in
Sis W;(O)

— determines final state

Schedules

VE if same read-froms & same final-writes
VSS if VE to some serial schedule
- VSG- (T}, T;) if T; reads-from T';, or T; does final-write
— VSG cyclic => not VSS
— VSG acyclic & (serial schedule from topo-sort is VE to S) => VSS
Conflicting Action if
— at least one of them is write action
— and actions are from different transactions
Anomalies from Interleaving
— dirty read problem (WR)
* Wi(=), Rz ()
— unrepeatable read problem (RW) => same row, different value
* Ry(z), Wa(z), C2, Ri(x)
— lost update problem (WW)
* Ri(z), Ra(x), Wi (), Wa(x)
CE: every pair of conflicting actions are ordered in the same way
CSS: CE to some serial schedule (CSS => VSS) (“serialisable” = CSS)
- CSS <= CSGis acyclic
blind write: Xact no read before it writes
— VSS & no blind writes => CSS
cascading abort: if T’; reads from T°; and T'; aborts, T’; must abort too
for correctness
Recoverable Schedule (essential): for every Xact 1" that commits in S, T°
must commit after T/ if T reads from T'
Cascadeless Schedule: can only read from committed Xacts
Strict Schedule (can use before-image): for every W; (O), O is not read
or written by another Xact until T°; abort / commit
Strict C Cascadeless C Recoverable

Transaction Scheduler

for each input action (read, write, commit, abort):
1. output action to scheduler (perform the action)
2. postpone the action by blocking Xact

3. reject and abort Xact

Lock-based Concurrency Control

if lock request not granted, Xact is blocked, Xact is added to O’s request

queue

e 2PL => CSS: once release a lock, no more request

Strict 2PL => strict & CSS: Xact must hold onto lock until commit / abort

Wait-For-Graph: T; — T; if T); waiting for T'; (must remove edge)

¢ Timeout mechanism: when Xact start, start timer, if timeout, assume dead-

lock

Deadlock Prevention - older Xact has higher priority (not restarted on kill)

— suppose T; requests a lock held by T'; (Higher-Lower)

— wait-die: T; wait for T';, T}; suicide => may starve

— wound-wait: kill Tj, T; wait for T]-

- if T'; dies, T still waits

Lock upgrade: similar to acquiring X

Lock downgrade: has not modified O, has not released any lock

Phantom Read Problem: re-executes query for a search condition but ob-

tains different rows due to another recently committed transaction

— can’t lock row if don’t exist => perform predicate locking instead, but
use index locking in practice for efficiency

Isolation Level (Dirty Read, Unrepeatable Read, Phantom Read, Write,

Read, Predicate)

Read Uncommitted: Y, Y, Y,L,N, N

¢ *Read Committed: N, Y, Y,L, S, N

Repeatable Read: N, N, Y,L, L, N

Serialisable: N, N, N, L, L, Y

Granularity: DB, Relation, Page, Tuple

— higher lock => lower is locked

— intention lock: must have I-lock on all ancestors



— acquire top-down

— toobtain S or IS, must have IS or IX on parent
— to obtain X or IX, must have IX on parent

- release bottom-up

MVCC - maintain multiple ver. of each object

Recovery Manager -,
R

read-only are never blocked / aborted
MVE if same read-from
MVSS if MVE to some serial monoversion schedule
— monoversion: each read action returns the most recently created object
version
— VSS C MVSS (not other way round)
: Xact T takes snapshot of committed state of DB at start of T
— can’t read from concurrent Xacts
— Concurrent if overlap start & commits
- Oy is more recent than O if T'; commit after T;
— Concurrent Update Property: if multiple concurrency Xact update same
object, only one can commit (if not, may not be serialisable)
First Committer Win (FCW): check at point of commit
First Updater Win (FUW) - locks only used for checking (NOT lock-based)
— to update O: request X-lock on O; when commit / abort, release locks
— if not held by anyone:
% if O has been updated by concurrent Xact: abort
% else: grant lock
— else: wait for T” to abort / commit
# if T commit: abort
% else: use (if not held by anyone) case
Garbage Collection: delete version O if exists a newer version O ; st for
every active Xact T}, that started after commit of T;, T'; commits before
T, starts (aka all active Xact can refer to Oj)
SI performs similarly to Read Committed, but different anomalies; does
not guarantee serialisablity too (violates MVSS, but not detected)
—  Write Skew Anomaly
# Both Xact read from initial value
— Read-Only Xact Anomaly
# A Read-Only Xact reads values that shouldn’t be possible
SSI: keep track of rw dependencies among concurrent Xact
= T -tw-> Tj -rw-> T}, : abort one of them (has false positives)
- ww from T — To if T writes to O, then Ty writes immediate
successor of O
% T commit before T'; and no Xact that commits between them
writes to O
— wrfrom Ty — Ty if T writes to O, then T3 reads this ver. of O
— rwfrom T7 — To if T reads a ver. of O, then Ty writes immediate
successor of O
Dependency Serialisation Graph (dashed if concurrent, solid if not)
— if S is SI that is not MVSS, then (1) at least one cycle in DSG, (2) for
each cycle, exists T, Tj, Ty, st
% T and T, might be same Xact
% T and T'; are concurrent with T; — rw— > T);
% AND T and T}, are concurrent with T; — rw— > T}
w
T Ty 2N
K 0
w N

Undo: remove effects of aborted Xact to preserve atomicity
Redo: re-installing effects of committed Xact to preserve durability
Failure
1. transaction failure: transaction aborts
— application rollbacks transaction (voluntary)
— DBMS rollbacks transaction (e.g. deadlock, violation of integrity
constraint)
2. system crash: loss of volatile memory contents
— power failure
- bugin DBMS/O0S
— hardware malfunction
3. media failures: data is lost / corrupted on non-volatile storage
— disk head crash / failure during data transfer

Buffer Pool

Can evict dirty uncommitted pages? (yes => steal, no => no-steal)

Must all dirty pages be flushed before Xact commits? (yes => force => no
redo, no => no-force)

in practice: use steal, no-force (need undo & need redo)

no steal => no undo needed (not practical because not enough buffer pages
leads to blocking)

force => no redo needed (hurts performance of commit because random
1/0)

Log-Based DB Recovery

Log (trail / journey): history of actions executed by DBMS - stored as
sequential file of records in stable storage - uniquely identified by LSN
Algorithm for Recovery and Isolation Exploiting Semantics (ARIES) -
designed for steal, no-force approach, assumes strict 2PL

Xact Table (TT): one entry per active Xact, contains: XactID, lastLSN
(most recent for Xact), status (C or U) because kept until End Log Record
Dirty Page Table (DPT): one entry per dirty page, contains: pagelD, recLSN
(earliest for update that caused dirty)

Normal Processing
Updating TT (Xact ID, lastLSN, status):

 first log record for Xact T: create new entry in TT with status = U
for new log record: update lastLSN

when commit: update status = C

when end log record: remove from TT

Updating DPT (pagelD, recLSN):
« when page P is updated (and not in DPT): create new entry with recLSN =
LSN (don’t update this)

« when flushed: remove from DPT

Log Records

default: LSN, type, XactID, prevLSN (for same Xact, first points to NULL)
update log record (ULR): pageID, byte offset (within page), length (in bytes
of update), before-image (for undo), after-image (for redo)

compensation log record (CLR) - made when ULR is undone: pagelD,
undoNextLSN (prevLSN in ULR), action taken to undo

commit log record

abort log record - created when aborting Xact: undo is initiated for this
Xact

 end log record - created after book-keeping after commit / abort is done

* (simple) checkpoint log record: stores Xact table

(fuzzy) begin_checkpoint log record: time of snapshot of DPT & TT
(fuzzy) end_checkpoint log record: stores DPT & TT snapshots

* only ULR and CLR are redoable log records
Implementing Abort

* Write-ahead logging (WAL) protocol: do not flush uncommitted update
until log record is flushed

need to log changes needed for undo

to enforce, each DB page contains pageLSN (most recent log record), before
flushing page P, ensure all log records up to pageLSN is flushed

Implementing Commit

Force-at-commit protocol: do not commit until after-images of all updated
records are in stable storage

to enforce, write commit log record for Xact, flush all log records (not data)
Xact is committed <= its commit log record is written to stable storage

Implementing Restart (order matters)

Analysis phase: determines point in log to start Redo phase, identifies
superset of dirtied buffer pool pages & active Xacts at time of crash
Redo phase: redo actions to restore DB state

Undo phase: undo actions of uncommitted Xacts

Analysis Phase
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« init DPT and TT to be empty
* sequentially scan logs

if r is end log record:
remove T from TT
else:
add T to TT if not in TT
set lastLSN = r's LSN
status = C if commit log record
if (r is redoable) & (its P not in DPT):
add P to DPT(pageID = P, recLSN = r)

Redo Phase

« opt cond (defn already flushed) = (P is not in DPT) or (P’s recLSN in DPT
> r’s LSN)

redoLSN = smallest recLSN in DPT
let r = log record w/ redoLSN
start scan from r:
if (r is ULR | CLR) & (not opt cond):
fetch page P for r
if P's pageLSN < r's LSN:
haven't redo, so redo action
set P's pageLSN = r's LSN
else: because <= P's pageLSN is 0K
set P's recLSN in DPT =
P's pageLSN+1

at end: create end log records for Xacts with status = C, & remove from TT

Undo Phase: abort loser Xacts

init L = lastLSNs (status =
repeat until L is empty
delete largest lastLSN from L
let r be log record for ~
if r is ULR:
create CLR r2
r2 undoNextLSN = r's prevLSN
r2 prevLSN = r's LSN
undo action
update P's pageLSN = r2's LSN
UpdateLAndTT(r's prevLSN)
if r is CLR:
UpdateLAndTT(r's undoNextLSN)
if r is abort log record:
UpdateLAndTT(r's prevLSN)

U) from TT

def UpdateLAndTT(lsn):
if 1sn is not null: add 1lsn to L
else: # reached first log => done
create end log record for T
remove T from TT

Simple Checkpointing

periodically perform checkpointing: suspend normal processing, wait until
all current processing is done, flush all dirty pages in buffer (to sync log
record & DB), write checkpoint log record containing TT, resume

during Analysis Phase, start from begin_ LR, init with TT, DPT in end_

Fuzzy Checkpointing (no suspension)

snapshot DPT & TT, write begin_ log record

write end_ log record (very slow to write)

write special master record containing LSN of begin_ to known location
(for fast retrieval) in stable storage

during Analysis Phase, start from begin_, init with TT and DPT in end_
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