
height of N

12" Tom Las Vegas: Always correct, random runtime"IsIgis nthat Monte Cark: Sometimes incorrect, same runtime

Average running time: for non-randomized algorithms that depend on input

Ear": T 8 T: I
-> need to know distribution of input

Ign = 2
K

laug":ann,"ama:awthe"'Ita," Ig (AB) = IgA + 19B
Expected running time: for randomized algorithms

Isa = 0, 1999: 1," ab3=b,a33:1936,lgya: fha
":kIs-

-> use E(x) for m = 2 E

19 (n :) : Elulgh) n:= inFe)" (1+&()) 1Ign)!= 25(ign(91gn)
P(An (B): AADLP/BINSA.) pIA1B): TEPSBEPIIA

Igign (s Ign<>Igincs ncsn"ccm9"cs (Ign)!(c cix(ign)"can! <sn" Bernoulli Trials: P · success Pr[X= 1)=(l-p)"".4
(geometric distribution) 9: 1-p-- failure E(x): K.42(x:k)

0(g(n): 3f(): 20, 2020 st 0 c f(n) sgh) vncns3
· 1. (1-4)"".P: T

& (g(n)= 3f(): 20, 2020 st0xcg()= f(n) Vncns3

&(g(n): 3f(): 2430,000, 2020 st 0xcg() = f(n) 32gh) vn=no3
Indicator Random Variable xi = Soifelopers Exxi): Pr9)

· (g(n)) = Gf(): xcco, 1nscost0 = f1) cg(n) Uncon
E(x1): ECX] (Y) if x and Y are independent

wig(n)) = 9f(n): xcco, 1nscost0 =cg(n<f() Anznob #ing -> CS3230 only cover chaining

NOTE: 25 O(CY), trigo is good counter example (by PHP) for h: (n) -> [M), if U? (N-1)M +1, then I set of elements that collide

Lhopital if num= den= 0 or In

Iimfiw = f(2) = 0 (l) ↳
Uniform I

-Not universal U

I <

Edenuniversal

regionisrising.T = 8 =) small o degree - 1 = 0 (n") = 0 (n") = w(n"")

is iconfittripis som #i #is toey
universal I

NOT universal
I I

S S S 3)

S

#Sisitin

I
#

esed num of collisions for any N elements:eachother

#ive i =i+1 o festedcostofoperations ison)if Mooes......
- Correctness: loop invariant

d and MCN is NOTNCr-
initialisation, maintainence, termination

- Runtime: Obvious tested max. load (max.elem in one slot)? Nw 1 Old)
·total collisions? (max.load): (max load) collisions (everything collide in (slot)

tor a ntrsiness:
Base case + strong induction

Sun: Ac So,,3m" is universal wherebyAlrodeno*

- Runtime: Recurrence relation 2 level hashing: Oll ups, ON) space

1. Recursion Tree (show - & I if bounding!) 3. Substition Method if N =
number of X; and NC = number of 4:

2. Master Method CCANNOT differ by 1gn) -> guess + induction N= x: N=@x. + 29cXiXi NN en9kien 4iY;

↑ (n) : aT(5) + f(n)
-> use are terms

a?1, b> 1, 1939 -> use subtraction
-

case I: flab = 0 nissa-3),220 #Recurrences
f (n) grows polynomially slower than 130 by n" (leaf-heavy) i (E) + 0) olign)

=>o (n'ss") i.e. Ign= 0 (n33 40 (n=3) 2i(7) + 01) O(n) Sifcildi as fill a stelldi
case 2: fl) = 8In 183"1gn), K2C nlgn= 0 In"3) nIgign 20 In"") ↑(E) +0(n) 0 (n)

f) (n) grows at similar
rates with n1gya

(similar work on each level) 21 (E) + 0 (n) 6 (n (gn) 11-I)= t
=>5 In '8s" 19""n) 2T(E) + 0 (nIgn) 0 (n1gn) 11+2)

but cab&

case 3: f) = 0 (n 1832
+ 3) 2,0 i(n) + 0(lgn) Olign)

f (n) grows polynomially faster than 1839 by n3 (root-heavy)
i (n-1) + 0(v) Olo) o

In Wi
*D f(n) satisfies regularity condition 2T(E) + t 8 (n (gIgn) Comparison-based Sorting

↳)n! universe
that of 15) -> cf(r) for some cal (state, or range of c 2T(m) + 011) 5 (Ign) ↳ cut in half every query

=>o (f()) i.e. "gign Carrot for m
2T (02) + 0 (Ign) - (Ign(glgn) ↳ Relig(n:)) = Mn/gn)

nIgign CANNOT for m

#edAnalysis Imostof chealtensive *No probability herProgramming/poly (2m) if optimal solvesas-> unbounded

1. Aggregate Analysis -> infeasible (no possible sol?) -> not necessarily integral solv

->
average cost of worst sequence of operations Maximise:9,49n)" "i #rays

at vertex
11 =3 -><czy and 12 y

- -

and y? O

-> simple to understand but tedious in practice constraints: c1, . . ., n110 (non-negative)

2. Accounting (Banker's) Method
*true

after any i 9.4,+.
.- a "1b, youhearconstraitsin ete

-> set (i) for each up st [ti)?Ecli) *only upper bound min I mas: multiply yo

-> invariant: always enough credit to pay off my next op not non-neg: replaces of (i -c) Assigning bits to objects on choose subsets

-> cheap t(i) -> overpay chil
set (i) as low as possible

-> SAT or Partition

3 1. tighter bound

sections if Disease, Acesare-> expensive + (:) -> lower (i)
2. analysis easier

8)but small fixed set

3. Potential Method (credit nearer to 0) Strans -> kolor, 3C0kr

-> cheap up t OPli) > o 2.A reduces to B in p(n)-time
Arrange in order

-> expensiveup -> Op(i) < 3.A can be solved in polynomial time using black box for B
+ Dir/Undir Hamiltonian on TS4

-> P(i) is "credit amount" after inthop -> prove
like typical Small subset satisfying constraints

4.Can transform instance of A -> instance of B
-> MinVertex Cover

*Tochelsas
-> show it's in p(2) Large subset satisfying constraints

2. 6) (i)20 X; to be valid to function
-> show YES-instance of Az- YES instance of B

-> MaxIndSet on MaxClique on Max SAT
Factor

G
<(i) I + 1:) + $(i)-6C:-1) Knapsack DPpseudo-poly: poly in numeric value & exponential in length

Partition -> Partition

amortized cost = actual cost + (P(n)-6) (s)) number"s" appears -> 3SAT OR 3Cokr

*is an upper bound #Pc(NP2c0-ND) Factor (NP-co-Np)

&

(deterministic polynomial): can solve in poly time of instance

#Programmingapolynomialsubproblems, hugeoverlapof
subprobeson

#(non-deterministic polynomial): verify YES in poly time of instance

↑

*
P: verify NO in poly time of instance EYES/No certs Vinstances -> V / instance, certificate)

Recursive Formulation:base cases + inductive cases A istard if FBEND: BIpA CNP <p N4-hard]

Optimal Substructure: an optimal sole to a problem contains optimal sold to subproblems Implete = NP and NP-hard (equivalent to 3-SAT, show NP + reduce known NP-complete to this I

-> prove w) cut & paste 3SAT: K,ve, vas)e(ivine vassa...

1. Suppose exists a sole that is NOT using "optimal" is optimal

2.add (9:) + even "better"; swap to use "optimal" instead #imation) the CANNOT reduce in general let A be set
-

chosen

3.solution is improved (still optimal, contradiction (OK to swap 2: cost of optimal
...

so 1A) = 2
*

Overlapping subproblems C: cost found by approx.algo. [worst case) Since C=KIA), C3k>
*

minimisation: f> ideally small & constant
=>k- approximation

teedstoone subproblem at each step -> "locally optimal is also globally opticalset maximisation: (*) I I
Polynomial - Time Approximation Scheme (PTAS): run in poly (n)f(s) and approxratic (1+), 220

knapsack
-> prove w) cut & paste approx Fully Polynomial-Time Approximation Scheme (EPTAS): run in polyn, Ys) and approxratic (1+), s

Greedy - choice property: exists an optimal sold that makes the greedy choice

-> prove w) cut & paste Diagonal DP
for (0=1+o n.1)

for (= 1 to 0-1-0)
j = i+ 6

*Flow (1) capacity: a (u,EE: 0 I fluct=<(it Greedy interval: start last or ends first

flow-in = flow-out

(2) flow conservation: for EU - 9s, t3: E fIrn): a flut

↑Filkerson DFS: 0 (IE) Imax flowl); Edmond Karp's: 0 (IVIIEP); Dinic's:OSIVPIED To.x
us1):4if (n,v)GE:<(u, v) = c(u, 2) - f(u,v) (can increase by c8)

if (v,u)GE: <p(u, r)=flv,n) Ccan reduce by 2. T if an = 6m, (/S/n,m) = (CS/n-1, m-1) + an

if neither: < Lu, v)= 0 if anybm, (CS(2,m): bigger of CCS/2-1, m) 02 2cs/n, m-1)

1. All f(n,v)= 0 ImCut

2. Choose a path from s-> t S: Evertices reachable from sh 1
1. m = min (Lu,v) on path T = V - S vars: flu,w) for (u,v) GE

2. If m = 0, skip path max flow:9 c(u,v) for ES, vET maximise neigh(s) fIs.v)
3. for each (u,v) in path: -> 0 (n,vIGE: flust? O

1. if (nv3 G E, increment flush by m -> v (n,vIGE: flusr)1 clu,v)

2. if (vn) G E, decrement flush) by o -> EneU19st3: 4 f(us): G flu)

-> always integral if inputs are integral

tive)

SubsetSum -> Partition: add sum(s), 2T

CNF:P =ccc... 1 (m

Pick arbitrary -

I expected

Approx Proof: O correct solv

&approx ratio

