$$
\frac{\left[\frac{x}{x-16x+100x+1}\right]}{x^2+\frac{x-16x}{x^2}+\frac{x-16x}{x^2
$$

Amortized Analysis > most op cheap Linear Programming | poly [n,m] ; P optimal sole exist * NO probability → unbounded
→ infeasible [no possible ml?] a not necessarily integral soly Variables: x1, ..., xn 1. Aggregate Analysis $\underbrace{\mathsf{Maximize}}_{i} : \mathcal{Z}_{i \in [n]} c_i \cdot x_i \qquad \qquad \boxed{\text{Simplex always at vertex}}$ average cost of worst sequence of operations $|x| = y \Rightarrow x \in y$ and $x \ge -y$ λ λ λ λ λ λ λ Simple to understand but tedions in practice f on straints: \mathcal{H}_1 , ..., \mathcal{H}_n 30 $\left[$ non-negative) $a_{ij}x_i + \cdots + a_{in}x_n$ $\subseteq b_i$ $\left\{\frac{m}{n} \frac{\left[\text{linear}\right]}{\left[\text{linear}\right]} \text{ coefficients}\right\}$ 2. Accounting (Banker's) Method true after any i [no lg, power, xy etc] \Rightarrow set $c(i)$ for each op $s(-g + t(i)) \leq g(c(i))$ min → m az
> 3 = → 5 = multiply by =1 Assigning bits to objects or choose subsets > invariant: always enough credit to pay off <u>any</u> next op $_{\text{noth}}$ non-neg : replace $x \sim y$ $(x'-x'')$ $set (i)$ as low as possible SAT or Partition t(i) -> overpay c(i) + cheap 1. fighter bonnd \Rightarrow expensive $\pm (1)$ \Rightarrow lower $\epsilon (i)$ if B is easy. A is easy Reductions / 10 but small fixed set 1 2. analysis easier (credit nearer to 0) 3. Potential Method 1. $A \leq B$ [transitive] \rightarrow klolov, 3 Colov 2 Breduces to B in p(n) - time Arrange in order \rightarrow cheap op \rightarrow $\Delta\phi(i)$ > 0 3. A can be solved in polynomial timo using black box for B > Dir/Undir Hamiltonian OR TSP \rightarrow expensive op \rightarrow $\Delta \phi(i)$ c 0 > prove like typical > $\phi(i)$ is "credit amount" after i-th op Small subset satisfying constraints 4. Can transform instance of A -> instance of B * state & check > Min Vertex Cover $1. 6020$ Large subset satisfying constraints a show it's in p(m) Show YES-instance of A e YES instance of B 2. $\phi(i) \ge 0$ V i to be valid ϕ function Max Ind Set of Max Clique or Max SAT Factor. $f(t)$ + $\phi(t)$ + $\phi(t-1)$ apsack DP p_{osend}o-poly : poly in numeric value & exponential in length Partition -> Partition $\epsilon(s)$ $\sim 10^{-10}$ amortized cost = actual cost + $(\phi(n) - \phi(o))$ number "3" appears -> 3SAT OR 3Color $NP \bigcap P \subseteq (NP \cap co-NP)$ Factor $\in (NP \cap co-NP)$ * is an upper bound Subset Sum \Rightarrow Partition: add sum(s), 2T P (deterministic polynomial): can solve in poly time of instance Dynami: Programming | > polynomial subproblems; hunge overlap of subproblems NP (non-deterministic polynomial) : verify ves in poly time of instance ferative bottom-up fashion w/ DP table [easier to prove run-time] $co-M$: verify No in poly time of instance \leftarrow 7 yes/no certs Vinstances \rightarrow V[instance, certificate) Recursive Formulation: base cases + inductive cases A is NP-hard if VBENP: BEPA [NPEP NP-hard] NP-complete = NP and NP-hard [equivalent to 3-SAT, show NP + reduce known NP-complete to this] Optimal Substructure: anoptimal solo to a problem contains optimal solo to subproblems 3 - SAT : $(x, y, x, y, x) = (x, y, x, y, x, y, x)$ A ... > prove w/ cut & paste $CNF: \phi = C_1 \circ C_2 \circ \cdots \circ C_n$ 1. Suppose exists a solo that is NOT using "optimal" is optimal Pick arbitrary _ 2. add x[;] > even "better" ; swap to use "optimal" instead Approximation - CANNOT reduce in general let A be set __ chasen 3. solution is improved \int still optimal, contradiction \int ok to swap ... so $|A| \leq C^{\lambda}$ C^4 : cost of optimal C : cost found by approx. algo. [worst / expected case] since $c : k[A]$, $c \leq k c^4$ Overlapping subproblems minimisation: $\frac{C}{C^2}$ > 1 => k - approximation ideally small & constant Greedy \int \rightarrow one subproblem at each step \rightarrow "locally optimal is also globally optimal" maxinisation : $\frac{c^*}{2}$ > 1 $Polynomial$ -Time Approximation Scheme (PTAS): run in poly(n) f(E) and approx ratio (1+E), E>0 Optimal substructure Fully Polynomial - Time Approximation Scheme (FPTAS): run in poly(n,Ve) and approx ratio (1+2), 2>0 > prove w/ int & pasta Greedy-choice property: exists an optimal soln that makes the greedy choice $\int_{\partial r} \left(\begin{array}{ccc} \Delta & 1 & 4a & n-1 \\ 0 & 1 & 1 & 1a \\ 0 & 1 & 1 & 1a \end{array} \right)$ > prove w/ int & paste Approx Proof: 1 correct sol! Diagonal DP 2 approx ratio (1) capacity: $V(m,v)$ $g \in V(m,v)$ $g \in C(m,v)$ Greedy interval : start last or ends Pirst Max Flow (2) flow conservation : for u ϵ V - $\{s, \epsilon\}$, $\sum f(v, w)$ = $\sum f(v, w)$ $\fbox{\parbox{12cm} {\parbox{12cm} {\begin{cm} \hbox{\footnotesize{6cm}} \\\hbox{\footnotesize{of} \\\hbox{\footnotesize{6cm}}\end{cm}}}}\quad \ \ \text{ of S : $O\big(\hbox{\footnotesize{[E]}}$ \cdot \hbox{\footnotesize{Imax}}$ \cdot \hbox{\footnotesize{Ib}}\text{d}u$}]\Big)~; \ \ \text{E}{}_{\text{d}mond}~\text{Karp's}: $O\big(\hbox{\footnotesize{[V]}}\text{[E]}\big)$ \ ; \ \ \text{D}{}_{\text{init}}`s: $O\big(\hbox{\footnotesize{[V]$ LCS DP $f(x,y) \in E \rightarrow C_{\rho}(x,y) = C(x,y) - \int (x,y)$ [can increase by $C_{\rho}(x)$ $LCS(i, o) = \phi$ $LCS(o, i) = \phi$ if $(v, u) \in E$: $c_E(u, v) = f(v, u)$ if $a_n = b_m$, $L(s(n,m) = L(s(n-1, m-1)) + a_n$ $[$ $[$ can reduce by $[$ if $a_n \neq b_m$, $LLS(n,m) = bigger - s^p - LLS(n-1,m)$ or $LCS(n,m-1)$ $= 6 \int (u, v) = 0$ if neither M inimum ω 1. $a_{11} f(x, y) = 0$ 2. Choose a path from s + t Max Flow LP $S = \{$ vertices reachable from $s\}$ $vars: f(w,v)$ for $(w,v) \in E$ 1. $m = min$ $C_{\ell}(u,v)$ on path $T = V - S$ maximise $\sum_{v \in \text{neigh}(s)} f(s,v)$ max flow = \mathcal{Z}_1^1 $c(w,v)$ for $u \in S$, $v \in T$ 2. if ms0, skip path \Rightarrow \forall $(m,v) \in E : f(m,v) \ge 0$ 3. For each (w,v) in path: \rightarrow \forall $(m,v) \in E : f(m,v) \in c(m,v)$ $1.$ if $(x, y) \in E$, increment $f(x, y)$ by m $\Rightarrow \quad \forall u \in V \setminus \{s,t\} \; : \; \underset{v \in v}{\mathcal{L}} \; \mathfrak{f}(u,v) \; : \; \underset{v \in U}{\mathcal{L}} \; \mathfrak{f}(v,v)$ 2. if $(v, w) \in E$, decrement $f(v, w)$ by m

a always integral if inputs are integral