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Data Partitioning
Desirable properties of fragmentation
• completeness: each item in R can be found in ≥ 1 fragment

(nothing is lost)
• reconstruction: R can be reconstructed from fragments

(must be lossless join)
• disjointness: data items are not replicated
Fragmentation Techniques
• Range Partitioning

– Use predicates on ≥ 1 attribute (e.g. < 100, [100, 500),
≥ 500)

– Use catch-all predicate to guarantee correctness OR use
a binary tree (p1 vs ¬p1)

• Hash Partitioning
– Good hash function + not-skewed data => data will be

evenly distributed
– Method 1: modulo method - when adding / removing

nodes: need to rehash everything (less elastic)
∗ In Ri if h(...) mod i is i

– Method 2: consistent hashing - easier to add / remove
nodes (more elastic)
∗ Partition h(...) using n values into v1 < ... < vn

(replicated to all nodes OR just master)
· 1st: ≤ v1 and > vn , 2nd: (v1 , v2 ]

∗ In Ri if h(...) is in Ri ’s range, R1 is catch-all node
∗ Non-uniform data & load distribution (can be man-

aged with virtual nodes -> let variable amount map
to same physical node)

Derived Horizontal Fragmentation
• Partition a R based on S using semi-join Ri = R ⋉A Si
• For completeness, R.A ⊆ S.A
• For disjointness, S.A must be key
• So for both, R.A must be FK of S and NOT NULL
Vertical Fragmentation
• key(R) must be in all partitions (for disjointness: only keys

are duplicated)
• heuristic Attribute Affinity Measure: if commonly refer-

enced together, should be in same partition
Complete Partitioning wrt Query
A partitioning F is complete wrt to Q if for all fragments
Ri ∈ F: either return WHOLE partition OR nothing.
Minterm Predicate Partitioning
Minterm predicate m = a combination (positive / negative) ∧
for a set of predicates (|m| = 2n). Use boolean algebra to
simplify
• Q = {Q1 , ..., Qk}, Qi = σpi (R)
• P = {p1 , ..., pk}
• F = {R1 , ..., Rm} where Ri = σmi (R)

Minterm predicate partitioning F (of Q) is always a complete
partitioning wrt to the Q. Watch out for ∨.

Query Processing
Make query plan that minimises total cost (CPU, I/O, comm)
OR response time. Try to parallelise queries.
1. Normalisation (rewrite query into normal form)

• *more common CNF (p ∨ p) ∧ (p ∨ p)
• DNF (p ∧ p) ∨ (p ∧ p)
• p is simple predicate: single attribute Ai op v

2. Semantic Analysis (check against schema + type check)
3. Simplification & Restructuring
Localisation Program
• Rewrite distributed query into fragment query
• ∪ for horizontal partition; ▷◁ for vertical partition
Reduction Techniques
Identify & remove queries that do not contribute to result
• Reduction with Selection: σp(Ri) = ∅ if Ri = σFi (R)

and Fi ∧ p = false
• Reduction with Join: Ri ▷◁a Sj = ∅ if there’s no “inter-

section” of predicates on join attributes (a)
• Reduction with Derived Frag.: Sj ▷◁a Ri = ∅ if Si is

derived from R and i ̸= j
• Reduction with Vertical Frag.: if missing required attribute,

drop the fragment
Distributed Join Strategies R ▷◁A S

1. both R and S are partitioned on join key
2. only R (not S) is partitioned on join key
3. neither are partitioned on join key
Communication Cost
• Collocated: 0

– all servers perform local join -> send results to server
• Directed: size(R) if R is repartitioned (R is NOT previ-

ously partitioned)
– repartition -> if in wrong server, send to correct one

• Repartitioned: size(R) + size(S)
• Broadcast: (n − 1) ∗ size(R) where R is smaller one

– broadcast smaller table to ALL servers

Storage
LSM (Log-Structured Merge) Storage
Writing to B+ is random I/O (+ splitting & propagate); use
LSM instead (append-only updates)
• Memory Table (in memory hash table with in-place updates)
• After threshold: sorted + flush to disk (sequential I/O)
• SSTables (Sorted String Table): immutable; records are

sorted by K; each SSTable associated with range of key
values + timestamp

• Commit Log Files used for durability
Compaction of SSTables
• Why?

– improves read performance by defragmenting table
records

– improves space utilisation by removing tombstones
(must ensure all other versions are gone) & stale values
∗ can remove at bottom-most level (because guaran-

teed not in any other SSTable at this level, and no
higher levels)

• Size-tiered Compaction Strategy (STCS)
– Each tier has approx. same size
– compaction triggered at tier L if number of SSTables

== threshold
∗ All SSTables at L are merged into one SSTable at

L + 1
∗ Tier L becomes empty

– Each object has ≤ 1 version in every SSTable
• Levelled Compaction Strategy (LCS)

– SSTables at level 0 can have overlapping key ranges
– For level ≥ 1

∗ each SSTable is same size
∗ key ranges do not overlap within the tier
∗ SSTable at L overlaps with at most F SSTables at

L + 1
– Lower level (across tiers) + larger index (within tier) is

more recent
– Compaction: new tables stored at L + 1, old tables re-

moved
∗ for L ≥ 1: choose a SSTable (round-robin style

with wrap-around) -> merge with all overlapping
SSTables at L + 1

∗ for L == 0: merge all SSTables at level 0 with all
overlapping SSTables at level 1

∗ if inserting into SSTable violates its F condition,
make new table

∗ triggered when number of level 0 reaches threshold;
for L ≥ 1: size(L) > FL MB

– Each level stores F times as much data as previous
∗ For n records of m MB each, in worst case: last level

stores a version of each of the n records.
∗ Therefore, FL−1 < mn ≤ FL =⇒ L =

⌊logF(mn)⌋
– Each object has ≤ 1 version in every SSTable (in level

0), has ≤ 1 version in every other level.
Searching LSM
• Start at MemTable; go to next level, start at right-most table
• Check key range first: if within, use binary search

– At each level ≥ 1: either search 0 or one tables
Optimising SSTable Search
SSTables are stored in blocks.
1. Sparse index

• (k1 , k2 , ..., kN ) if N blocks
• ki is first key value in block i
• Binary search the sparse index in-memory

2. Bloom filter
• if match ALL hash functions, might be in block (false

positive)
• else, definitely not

Indexing
• Local Indexing

– Each node stores index for its data
– Easy to update; still need to scatter-gather
– Have to check all nodes if not partition key

• Global Indexing
– Index the entire DB, partition index with hashing into

all the nodes
– Hard to update (need another server); good for searching
– Have to check single node even if not partition key

DynamoDB
• item in table has PK, otherwise it’s schemaless

– Single PK = (partition key)
– Composite PK = (partition key, sort key)

• Tables are partitioned by partition key
• Items in same partition are sorted by sort key (if given)
• Global Index: index key is simple or composite; partition

key can be different from table PK
• Local Index: index key is composite only (sort key is in-

dexed key); partition key must be same as table PK

Distributed Commit Protocols
• ACID

– Atomicity: all or nothing
– Consistency: if each xact is consistent and DB starts

consistent, it ends consistent
– Isolation: Executions of xacts are isolated from each

other
– Durability: if a xact commits, its effects persist

Centralised DBMS Recovery Manager
Recovery Manager ensures atomicity and durability.
• Implementing Abort

– Write-Ahead Logging Protocol: flush uncommitted up-
date after before-image is flushed

– Undoes all updates by xact by restoring before-image
• Implementing Commit

– Force-At-Commit Protocol: commit a xact after after-
images of all updated pages are flushed (write commit
log, immediately flush)

• Implementing Restart
– Redo phase: redo all updates
– Undo phase: abort all active xacts

Failures in DDBMS
• Site failures

– fail-stop model: a site is either operational OR failed
– Partial site failure: some sites are operational, some

have failed
– Total site failure: all sites have failed

• Communication failures (all sites operational)
– lost messages, network partitioning (split-brain prob-

lem)
Two Phase Commit (2PC): voting + decision

(one state transition apart)
• ALL reach same global decision
• once voted, cannot change vote
• one abort, global = abort
• anyone can abort without voting
• commit => all voted commit
• no failure + all vote commit => commit
Log records are flushed / forced / synchronous writes
• Coordinator: Force write commit log record, don’t force

write abort log record
– (both) Recovers in WAIT: after timeout, will abort

• Participant must force write ready log record
– Recovers in INITIAL: will abort (but global might be

commit)

• Participant: Force write commit / abort log record (if voted
commit), don’t need to force write (if voted abort)
– (vote commit): recovers in READY, will revote commit,

coordinator might not be able to inform global decision
(because too long later)

– (vote abort): recovers in INITIAL, will abort -> OK!

Site Failures
• detected by timeouts
• Recovery Protocol (by server that failed)

– independent if can terminate without outside info
• Termination Protocol (by TC)

– non-blocking if can terminate without waiting for re-
covery

Cooperative Termination Protocol
• Let participants communicate with each other
• If P timeouts in READY: P asks for decision

– if any node is COMMIT / ABORT: P does that & tells
anyone who is READY

– if a node is INITIAL: it aborts, and replies ABORT
– if all are READY: blocking!

Three Phase Commit (3PC)

• Termination Protocol Changes
– Coordinator’s pre-commit: write commit log record +

send global-commit to operational participants
– Participants’ ready + pre-commit: execute Termination

Protocol X
• Recovery Protocol is same as 2CP
Termination Protocol 1
• Protocol

– Run leader-election to elect C
– C requests state from participants

∗ if any in COMMIT: Global-Commit to all
∗ if none in PRECOMMIT: Global-Abort to all
∗ else: Send Prepare-to-Commit to READY, receive

Ready-to-commit from these, then Global-Commit
to all
· 2 steps are needed: otherwise if it crashes again

and none in PRECOMMIT, second if is triggered
– if any participant timeout (coordinator failed), elect new

coordinator; any participant that fails is ignored; anyone
that fails and recovers CANNOT participate

• Total Site Failure:
– Recovering TMs blocked until a TM P recovers:

∗ P can recover independently (state = INITIAL,
ABORT, COMMIT)
· P notifies recovered TMs

∗ P was last TM to fail
· P executes termination protocol

• Without total site failure + comm. failure: non-blocking
• With total site failure: blocking
• With comm. failure: might be split-brain
Recover from earlier failure cannot rejoin: single node in PRE-

COMMIT, Coordinator & that node fail -> global will be Abort
(but if he rejoins, it should be commit)
Termination Protocol 2 (handles comm. failure)
• Protocol

– Run leader-election to elect C
– C requests state from participants

∗ if any in COMMIT: Global-Commit to all
∗ if any in ABORT: Global-Abort to all
∗ if any in PRECOMMIT + no COMMIT / ABORT

+ majority in READY / PRECOMMIT: Prepare-
to-Commit to ~PRECOMMIT; receive Ready-to-
commit
· if number of PRECOMMIT + Ready-to-commit

is majority: Global-Commit
· else: blocked

∗ if no COMMIT / ABORT + majority in INITIAL /
READY / PREABORT: Prepare-to-Abort to ~PRE-
BORT; receive Ready-to-abort
· if number of PREABORT + Ready-to-abort is

majority: Global-Abort
· else: blocked

∗ else: blocked
• Blocked TMs periodically re-attempt protocol; when failed

TM recovers: executes protocol
• Non-blocking as long as majority are operational

Concurrency Control
Concurrency Control Manager ensures isolation.
• VE if same read-froms & same final-writes
• VSS if VE to some serial schedule

– VSG - (Tj , Ti ) if Ti reads-from Tj , or both write to same
variable and Ti does final-write

– VSG cyclic => not VSS
– VSG acyclic & (serial schedule from topo-sort is VE to

S) => VSS
• conflicting actions if

– at least one of them is write action
– and actions are from different transactions

• CE: every pair of conflicting actions are ordered in the same
way

• CSS: CE to some serial schedule (CSS => VSS)
– CSS ⇐⇒ CSG is acyclic

• blind write: Xact no read before it writes
– VSS & no blind writes => CSS

• Recoverable Schedule (essential): for every Xact T that
commits in S, T must commit after T′ if T reads from T

Lock-Based CC

Held
Requested - I S X

I Y Y N N
S Y N Y N
X Y N N N

• if lock request not granted, Xact is blocked, Xact is added
to O’s request queue

• 2PL => CSS: once release a lock, no more request
• Strict 2PL => strict & CSS: Xact must hold onto lock until

commit / abort
• Wait-For-Graph: Ti → Tj if Ti waiting for Tj (must remove

edge)
• Timeout mechanism: when Xact start, start timer, if time-

out, assume deadlock
• Deadlock Prevention - older Xact has higher priority (not

restarted on kill to avoid starvation)
– suppose Ti requests a lock held by Tj (Higher; Lower)
– wait-die (non-preemptive): Ti wait for Tj ; Ti suicide =>

may starve
– wound-wait (preemptive): kill Tj ; Ti wait for Tj
– if Tj dies, Ti still waits

MVCC (multiple ver.)
• read-only are never blocked / aborted
• update xacts not blocked by read-only xacts
• MVE if same read-from
• MVSS if MVE to some serial monoversion schedule

– monoversion: each read action returns the most recently
created object version

– VSS ⊆ MVSS (not other way round)
Snapshot Isolation (MVCC protocol)
• SI: Xact T takes snapshot of committed state of DB at start

of T
– can’t read from concurrent Xacts
– Concurrent if overlap start & commits
– Oi is more recent than Oj if Ti commit after Tj
– Concurrent Update Property: if multiple concurrency

Xact update same object, only one can commit (if not,
may not be serialisable)

• First Committer Win (FCW): check at point of commit
• First Updater Win (FUW) - locks only used for checking

(NOT lock-based)
– to update O: request X-lock on O; when commit / abort,

release locks
– if not held by anyone:

∗ if O has been updated by concurrent Xact: abort
∗ else: grant lock

– else: wait for T’ to abort / commit
∗ if T’ commit: abort
∗ else: use (if not held by anyone) case

• Write Skew Anomaly (not MVSS)
– Both Xact read from initial value

• Read-Only Xact Anomaly (not MVSS)
– A Read-Only Xact reads values that shouldn’t be possi-

ble
• SSI (Serialisable SI): produced by SI and is MVSS
• Garbage Collection: delete version Oi if exists a newer ver-

sion Oj st for every active Xact Tk that started after commit
of Ti , Tj commits before Tk starts (aka all active Xact can
refer to Oj )

Distributed CC
• Global schedule S for T and {S1 , ..., Sm} is VSS / CSS if

– Each local Si is VSS / CSS
– and local serialisation orders are compatible

• Centralised 2PL (C2PL)
– all locks are managed by central TM’s lock manager

• Distributed 2PL (D2PL)
– each site manages locks for their own stuff

Distributed Deadlock Detection
• Centralised approach

– Each site maintains local Wait-For-Graph



– One site is Deadlock Detector: others periodically trans-
mit local WFG to it

Centralised SI
• one site is Centralised Coordinator (responsible for assign-

ing timestamps)
• assume FUW & write locks are distributed
• Performing Transaction

– TC requests CC for start and lastCommit
– for read X, TC requests TM_A to send most recent X

wrt lastCommit
– for write X, TC requests TM_A; might be blocked

• For committing xact T:
– TC requests CC for commit
– TC executes modified 2PC

∗ in voting phase: TC includes start & commit in
PREPARE messages

∗ when participant receives PREPARE, it checks for
WW-conflicts between T and committed concurrent
xacts (votes abort if any)

Producible?
Need to check S2PL & SI in local schedules, and then consider
global schedule across sites.
• S2PL: not global CSS => not S2PL; check for S2PL locally
• SI: if each object updated by at most one xact (xacts have

disjoint write-sets) => can be SI
– else: need to consider global schedule across sites to

check for concurrency

Data Replication
Improve system availability + performance + scalability
• one-copy serialisable (1SR) if same effect as one-copy DB

– equivalence: same read from, weak final write (only one
replica needs to be the same)

– checking 1SR: similar to globally serialisable,
∗ but need to check read from initial
∗ and check “in-between” writes (e.g. W_1, R_3,

W_2)
• strong mutual consistency if all replicas have identical val-

ues
Updating Replicas
• Statement-based replication: forward all SQL statements
• Write-ahead Log (WAL) shipping - file-based OR record-

based (streaming)
– Physical replication: specify page & byte offset to

change
– Logical replication: one logical log record for each af-

fected tuple
• Application-level replication

– Use triggers & stored procedures; more flexible but
higher overhead

Replication Protocols
Assume S2PL + statement-based replication
• Eager (sync) update - always 1SR: updates all replicas

within xact
• Lazy (async) update - may not be 1SR: updates only one

replica now; rest async via Refresh Xacts (need to be in-
order)
– probably not 1SR because xacts won’t read from one

another (will read from initial state)
• Centralised techniques: applied to master copy first before

propagating to other slave copies
• Distributed techniques: update is applied to any copy first
Note: reading local is best; when writing to all nodes, need to
write to self too
Quick identification:
• Refresh xacts => lazy
• For some object, if read & write in different servers =>

centralised (always write in master site)
Eager Primary Copy (Centralised)
• For each object, one copy is primary (different objects can

be in different sites)
• Each master site runs lock manager for logical object (for

all replicas)
• For read: req lock from master site, then read from any node
• For write: req lock from master site, then write to all nodes
Eager Distributed
• Each site runs lock manager on physical object (for local

replica)
– Need to request for S-lock and X-lock (blocks if not

available)
• Deadlocks are more common
• For read: req lock + read from any node
• For write: req lock + write to all nodes
Lazy Single-Master (Centralised)
• Single master site for all objects
• For read: req lock from master, then read from any node
• For write: req lock from master + write to master now
• For commit: informs master, master releases locks, gets

X-locks for refresh xacts & propagates async
– Must be in same order at all sites, ordered by commit

timestamp
– However, doesn’t guarantee 1SR, even with single object

+ single xact (because don’t read your own writes)
Lazy Distributed
• Each site runs lock manager on physical object (for local

replica)
• For read: req lock + read from any node
• For write: req lock + write to any node
• For commit: release locks, propagates async (other sites

grant X-lock for themselves)
– Inconsistent updates: requires reconciliation

∗ Last-Writer-Wins heuristic: accept the last refresh
xact (but only correct for blind writes)

Handling Failures
• detect failures using use timeout mechanism
• Slave Failure

– Lazy Single-Master: synchronise unavailable replicas
later

– Eager Single-Master: change ROWA to ROWAA (Read-
One / Write-All Available)
∗ Synchronise unavailable replicas later

• Master Failure

1. Wait for master site recovery (bad for availability)
2. Elect new master site (must have majority)

CAP Theorem
• Data Consistency
• System Availability
• Tolerance to Network Partitions
When there’s partitioned network:
• forfeit consistency: resume execution on selected partition

(might be inconsistent if partition does not have old master
as it lacks latest update)

• forfeit availability: wait for network to recovery

Quorum Consensus
Handles fault tolerance without replicated state machine.
• Each copy has non-negative weight Wt(Oi)

– Wt(O) = total weight
• Read threshold Tr(O); Write threshold Tw(O)
• Tr(O) + Tw(O) > Wt(O): read always reads up-to-date

write
• 2 ∗ Tw(O) > Wt(O): write always overwrites up-to-date

write
• For read: acquire S-lock on read quorum, read all copies &

return highest version number
• For write: acquire X-lock on write quorum, write all copies

& update version number = max(n) + 1
• k-tolerant: can tolerate failure of up to k sites

– Must hold: weights of n − k sites ≥
max{Tw(O), Tr(O)}

Consistency
Consistency Levels
• Eventual Consistency: returns any value that was written

(might not be valid state)
– If single variable, always valid state

• Consistent Prefix: returns all writes ≤ k (must be valid
state)

• Bounded Staleness: returns all writes performed ≤ tread −
T, where T is time period of staleness, newer writes may
be visible

• Causal Consistency: T1 < T2 (T1 causally precedes T2) if
any are true:
– T2 is executed after T1 in same session
– T2 reads from T1
– T1 & T2 has same write & T2 is final write
– transitivity of causal

• Strong Consistency: returns latest value
• Monotonic Reads: second read returns same OR more re-

cent
• Read My Writes
Tradeoffs
• Strength = size of set of allowable results
• Performance = read latency
• Availability = likelihood of success (with server failures)
Pileus
• Lazy Primary-Copy Replication

– Primary sites store master copies: all updates performed
here & ordered by commit timestamps

– Secondary sites: async propagation
• Distributed SI
Within a session, xacts are serial, defines scope for RMW, MR.
* Pileus’s eventual = consistent prefix
Pileus Multiversion Storage
• Each server:

– key-range of keys managed by me
– store = set of (key, value, timestamp)
– highTS = commit timestamp of latest xact by me
– lowTS = timestamp of latest pruning operation

• Each primary server (only this is involved in 2PC):
– logical clock
– pending (awaiting commit) = list of (Put-set, proposed

timestamps)
– propagating (after commit) = queue of (Put-set, commit

timestamp)
• Pruning Old Versions by increasing lowTS

– retain all versions with commitTS > lowTS OR latest
version where commitTS ≤ lowTS

Pileus Client
• Each application client:

– each server: key-range, latency, highTS, mapping of
real-time to logical time

– each session: commit timestamps of previous Puts +
previous Gets

• Put(key, value): buffered at client (visible to Gets in
T, but not for ~T)

• Client’s Get(key): if rejected: restart xact (if primary),
change server (if secondary)

• Server processing of Get(key, readTS):
1. Accept if readTS ≥ lowTS (if primary) OR readTS in

[lowTS, highTS] (if secondary)
2. S updates logical clock (if primary)
3. S returns (v, v.commitTS, S.highTS) where v is most

recent and v.commitTS ≤ readTS
• BeginTx(consistency, key-set):

1. Get MARTS(T) - minimum acceptable read timestamp
2. (if key-set given) for each ki in key-set, pick closest

server that:
– has key
– highTS >= MARTS (if primary, ignore this rule)
– tie break by lower latency, then higher highTS

3. readTS(T) = min highTS among the servers picked for
each key

• EndTx(consistency, key-set) for committing (only
primaries):
– Client selects Commit Coordinator (CC), and sends it

readTS + Put-set + largest commit timestamp (of all
Gets / Puts)

– CC partitions Put-set for participants + send Pre-
pareCommit with subset

– CC updates local clock to max(local, largest commit
timestamp + 1)

– On receiving PrepareCommit, each participant:
∗ proposedTimestamp = (local clock)++
∗ append (local Put-set, proposedTimestamp) to pend-

ing list

∗ reply with proposedTimestamp
– CC picks commitTS = max of proposedTimestamp &

sends to all
– On receiving commitTS, each participant:

∗ updates local clock = max(local, commitTS + 1)
∗ validate commit using SI
∗ replies commit / abort

– if all commit: write commit log & flush (commit times-
tamp + Put-set), informs client and participants

– On receiving confirmation, each participant:
∗ processes local Put-set + add to propagating (async)
∗ when done: inform CC + remove from pending

Blocked by Pending Transaction T’
Block if possible for commitTS(T’) ≤ commitTS(T)
• Get(k) for T: if T’ updated same key k &

T’.proposedTimestamp ≤ readTS(T)
• Validation request for T: both updated same key &

T’.proposedTimestamp ≤ commitTS(T)
• Replicating update for T: T’.proposedTimestamp ≤ com-

mitTS(T)

MARTS(T) - timestamp of version (not xact)
• Strong Consistency (only consider primary servers):

– let maxTS(ki ) be max timestamp among all versions of
ki in primary server of ki

– MARTS = max of maxTS(ki ) for all ki in key-set
• Eventual Consistency: 0
• Bounded Consistency: realToLogicalTime(client clock - t)
• Causal Consistency: max timestamp of all previous Gets

and Puts in current session
• Monotonic Reads: max timestamp of all previous Gets in

current session (key-set doesn’t matter)
• Read My Writes: max timestamp of previously committed

Puts in current session for objects accessed by T

Raft Consensus Algorithm
• Use cases:

– replicate logfile of coordinator in 2PC
– replicate locks in centralised lock

• Timers
– Election Timer: follower becomes candidate OR candi-

date restarts an election if timeout
– Leader Timer: leader resends RPC to follower if timeout
– Client Timer: client resends command if timeout

• Election Safety Property: at most one leader per term
– each server only votes once
– must get majority votes

• Election Liveness Property: some leader must eventually
be elected
– Each server chooses Election Timer randomly from

[T,2T]
– Good if T » broadcast time (average RTT)

• Persistent State (on disk) for all servers:
– currentTerm: latest term server has seen
– votedFor: in current term (can be null)
– log[]: log entries (index, term, command); 1-indexed

• RequestVote(candidateId, term,
lastLogIndex, lastLogTerm), server R replies
as follows:
1. if RPC.term < R.term: reply (R.term, false)
2. if RPC.term > R.term AND p:

– R.term = RPC.term; R.votedFor = RPC.candidateId
– reply (R.term, true)

3. if RPC.term = RPC.term AND r.votedFor = NULL
AND p:
– R.votedFor = RPC.candidateId
– reply (R.term, true)

4. if RPC.term = RPC.term AND r.votedFor =
RPC.candidateId (previous reply lost): reply (R.term,
true)

5. else:
– if RPC.term > R.term: R.term = RPC.term;

R.votedFor = NULL
– reply (R.term, false)

• p: R is not more complete than candidate
– X is more complete than Y if EITHER:

∗ X.lastLogTerm > Y.lastLogTerm
∗ OR X.lastLogTerm = Y.lastLogTerm AND

X.lastLogIndex > Y.lastLogIndex
• AppendEntries(leaderId, leaderTerm,

leaderCommitIndex, prevLogIndex,
prevLogTerm, logs[]): used for heartbeat too
1. if leaderTerm < F.term: reply (F.term, false)
2. if leaderTerm > F.term: F.term = leaderTerm
3. if logs[] not empty:

– If preceding don’t match: reject & let leader retry
with lower index

– Kill extraneous entries and append
4. if leaderCommitIndex > F.commitIndex:

F.commitIndex = min(leaderCommitIndex,
F.lastLogIndex)

5. reply (F.term, true)
• Leader Completeness Property: if a log entry is committed

in a given term, then that entry will be present in the logs
of future leaders

• State Machine Safety Property: if a server has applied a log
entry, no other server will apply a different log entry for
same index

Normal Operations
• Client sends command to leader; Leader appends command

to log; Leader sends AppendEntries to all followers
• Once committed:

– Leader executes & returns result to client
– Leader notifies followers of committed entries in future

AppendEntries (then followers will execute it)
• Leader Append-Only Property: leader never overwrites /

deletes entries in its log
• Log Matching Property: if two entries in different logs have

same index + same term
– => stores same command
– => logs in all preceding entries are identical

Committed Log Entries
• Directly committed once leader that created the entry has

replicated it to a majority of servers
– NOT counted even if same server re-elected

• Indirectly committed if preceding a directly committed
commit

• Committed entries are guaranteed to be in ALL future lead-
ers

Log Inconsistencies
• Missing entries: replication takes time
• Extraneous entries: will be removed by future AppendEn-

tries
Volatile State
• On all servers (init to 0):

– commitIndex: index of highest log entry known to be
committed

– lastApplied: index of highest log entry applied to state
machine

• On leaders (re-init after election):
– nextIndex[] for each server (init to leader.lastLogEntry

+ 1 -> assume all are replicated)
– matchIndex[] for each server: highest index that’s guar-

anteed to be replicated (init to 0)
Raft Rules
• For all servers:

– if commitIndex > lastApplied: lastApplied++; apply
logs[lastApplied]

– if request / response contains term > currentTerm: cur-
rentTerm = term; convert to follower

• For leaders:
– Upon election: send initial + periodic heartbeats
– If received command from client: apply to local log;

respond to client after applying command
– if lastLogIndex ≥ nextIndex for follower (update fol-

lower’s state):
∗ Send AppendEntries one-by-one; if fail: decrement

& retry
– if knows command has replicated to majority: update

commitIndex

Distributed Query Optimisation
Cost Estimation

• SF(σA=v(R)) ≈ 1
|πA (R)| (uniformity assumption)

• SF(σA<v(R)) take ratio
• SF(σp1∧p2 (R)) ≈ SF(σp1 (R)) ∗ SF(σp2 (R)) (indepen-

dence)
• SF(R ▷◁ S) ≈ 1/(max(|πA(R)|, |πA(S)|)) (inclusion)
• SF(R ⋉A S) ≈ |πA (S)|

|domain(A)| (inclusion)

Communication cost = Tfixed overhead per msg * (number of msgs)
+ Tone data unit * (total size of data)
Semijoin Optimisation
Eliminate dangling tuples (doesn’t join with any tuple)
Assume |R| < |S| and R ⋉A S

• Cost = TMSG + TTR ∗ |πA(S)|
• Benefit = TTR ∗ |R| ∗ (1 − SF(R ⋉A S))

– SF(R ⋉A S) = SFSJ(S.A)

Semijoin is beneficial if benefit > cost.
• Two query plans are comparable if satisfy ALL:

– both plans have same output schema (semijoin and join
NO!)

– AND both plans execute final operator on same server
– AND both plans either unordered or sorted in same

order
• Plan is better if comparable and lower cost

for i := 1 -> n:
opt({R_i}) = accessPlans(R_i) # index scan, ...
prunePlans(opt({R_i}))

for i := 2 -> n: # for increasing subsets
for S subseteq {R_1, ..., R_n} st |S| = i:
opt(S) = None
for O propersubset S: # join & SJ all pairs
for P propersubset O: # enumerator extension
other = opt((S - O) union P) # re-add P
opt(S) += joinPlans(opt(O), other, 0)
opt(S) += semijoinPlans(opt(O), other, 0)
prunePlans(opt(S))

ts = 0 # timestamp
while True: # fix-point iteration
S' = new plans with timestamp=ts (prev loop)
for O subseteq S & O is not None:
opt(S) += joinPlans(S', opt(O), ts+1)
opt(S) += semijoinPlans(S', opt(O), ts+1)
prunePlans(opt(S))

ts++
if S' is None: break

return opt({R_1, ..., R_n})

• Enumerator Extension: left & right operands may not be
disjoint

• Avoiding redundant joins & semijoins
– Reasonable query plan heuristic: for each leaf-to-root

path, each predicate only appears once
• Fix-point Iteration: some plans may not be complete

– Complete = output schema is same as not using semijoin
• Vertical Pruning

– Comparable plans for opt({. . . }) can be found outside
the entry (because of incomplete plans)

– Need to prune and compare across entries
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