
Jin Wei CS4224 Distributed Databases

Data Partitioning
Desirable properties of fragmentation
• completeness: each item in R can be found in ≥ 1 fragment

(nothing is lost)
• reconstruction: R can be reconstructed from fragments

(must be lossless join)
• disjointness: data items are not replicated
Fragmentation Techniques
• Range Partitioning

– Use predicates on ≥ 1 attribute (e.g. < 100, [100, 500),
≥ 500)

– Use catch-all predicate to guarantee correctness OR use
a binary tree (p1 vs ¬p1)

• Hash Partitioning
– Good hash function + not-skewed data => data will be

evenly distributed
– Method 1: modulo method - when adding / removing

nodes: need to rehash everything (less elastic)
∗ In Ri if h(...) mod i is i

– Method 2: consistent hashing - easier to add / remove
nodes (more elastic)
∗ Partition h(...) using n values into v1 < ... < vn

(replicated to all nodes OR just master)
· 1st: ≤ v1 and > vn , 2nd: (v1 , v2]

∗ In Ri if h(...) is in Ri ’s range, R1 is catch-all node
∗ Non-uniform data & load distribution (can be man-

aged with virtual nodes -> let variable amount map
to same physical node)

Derived Horizontal Fragmentation
• Partition a R based on S using semi-join Ri = R ⋉A Si
• For completeness, R.A ⊆ S.A
• For disjointness, S.A must be key
• So for both, R.A must be FK of S and NOT NULL
Vertical Fragmentation
• key(R) must be in all partitions (for disjointness: only keys

are duplicated)
• heuristic Attribute Affinity Measure: if commonly refer-

enced together, should be in same partition
Complete Partitioning wrt Query
A partitioning F is complete wrt to Q if for all fragments
Ri ∈ F: either return WHOLE partition OR nothing.
Minterm Predicate Partitioning
Minterm predicate m = a combination (positive / negative) ∧
for a set of predicates (|m| = 2n). Use boolean algebra to
simplify
• Q = {Q1 , ..., Qk}, Qi = σpi (R)
• P = {p1 , ..., pk}
• F = {R1 , ..., Rm} where Ri = σmi (R)

Minterm predicate partitioning F (of Q) is always a complete
partitioning wrt to the Q. Watch out for ∨.

Query Processing
Make query plan that minimises total cost (CPU, I/O, comm)
OR response time. Try to parallelise queries.
1. Normalisation (rewrite query into normal form)

• *more common CNF (p ∨ p) ∧ (p ∨ p)
• DNF (p ∧ p) ∨ (p ∧ p)
• p is simple predicate: single attribute Ai op v

2. Semantic Analysis (check against schema + type check)
3. Simplification & Restructuring
Localisation Program
• Rewrite distributed query into fragment query
• ∪ for horizontal partition; ▷◁ for vertical partition
Reduction Techniques
Identify & remove queries that do not contribute to result
• Reduction with Selection: σp(Ri) = ∅ if Ri = σFi (R)

and Fi ∧ p = false
• Reduction with Join: Ri ▷◁a Sj = ∅ if there’s no “inter-

section” of predicates on join attributes (a)
• Reduction with Derived Frag.: Sj ▷◁a Ri = ∅ if Si is

derived from R and i ̸= j
• Reduction with Vertical Frag.: if missing required attribute,

drop the fragment
Distributed Join Strategies R ▷◁A S

1. both R and S are partitioned on join key
2. only R (not S) is partitioned on join key
3. neither are partitioned on join key
Communication Cost
• Collocated: 0

– all servers perform local join -> send results to server
• Directed: size(R) if R is repartitioned (R is NOT previ-

ously partitioned)
– repartition -> if in wrong server, send to correct one

• Repartitioned: size(R) + size(S)
• Broadcast: (n − 1) ∗ size(R) where R is smaller one

– broadcast smaller table to ALL servers

Storage
LSM (Log-Structured Merge) Storage
Writing to B+ is random I/O (+ splitting & propagate); use
LSM instead (append-only updates)
• Memory Table (in memory hash table with in-place updates)
• After threshold: sorted + flush to disk (sequential I/O)
• SSTables (Sorted String Table): immutable; records are

sorted by K; each SSTable associated with range of key
values + timestamp

• Commit Log Files used for durability
Compaction of SSTables
• Why?

– improves read performance by defragmenting table
records

– improves space utilisation by removing tombstones
(must ensure all other versions are gone) & stale values
∗ can remove at bottom-most level (because guaran-

teed not in any other SSTable at this level, and no
higher levels)

• Size-tiered Compaction Strategy (STCS)
– Each tier has approx. same size
– compaction triggered at tier L if number of SSTables

== threshold
∗ All SSTables at L are merged into one SSTable at

L + 1
∗ Tier L becomes empty

– Each object has ≤ 1 version in every SSTable
• Levelled Compaction Strategy (LCS)

– SSTables at level 0 can have overlapping key ranges
– For level ≥ 1

∗ each SSTable is same size
∗ key ranges do not overlap within the tier
∗ SSTable at L overlaps with at most F SSTables at

L + 1
– Lower level (across tiers) + larger index (within tier) is

more recent
– Compaction: new tables stored at L + 1, old tables re-

moved
∗ for L ≥ 1: choose a SSTable (round-robin style

with wrap-around) -> merge with all overlapping
SSTables at L + 1

∗ for L == 0: merge all SSTables at level 0 with all
overlapping SSTables at level 1

∗ if inserting into SSTable violates its F condition,
make new table

∗ triggered when number of level 0 reaches threshold;
for L ≥ 1: size(L) > FL MB

– Each level stores F times as much data as previous
∗ For n records of m MB each, in worst case: last level

stores a version of each of the n records.
∗ Therefore, FL−1 < mn ≤ FL =⇒ L =

⌊logF(mn)⌋
– Each object has ≤ 1 version in every SSTable (in level

0), has ≤ 1 version in every other level.
Searching LSM
• Start at MemTable; go to next level, start at right-most table
• Check key range first: if within, use binary search

– At each level ≥ 1: either search 0 or one tables
Optimising SSTable Search
SSTables are stored in blocks.
1. Sparse index

• (k1 , k2 , ..., kN) if N blocks
• ki is first key value in block i
• Binary search the sparse index in-memory

2. Bloom filter
• if match ALL hash functions, might be in block (false

positive)
• else, definitely not

Indexing
• Local Indexing

– Each node stores index for its data
– Easy to update; still need to scatter-gather
– Have to check all nodes if not partition key

• Global Indexing
– Index the entire DB, partition index with hashing into

all the nodes
– Hard to update (need another server); good for searching
– Have to check single node even if not partition key

DynamoDB
• item in table has PK, otherwise it’s schemaless

– Single PK = (partition key)
– Composite PK = (partition key, sort key)

• Tables are partitioned by partition key
• Items in same partition are sorted by sort key (if given)
• Global Index: index key is simple or composite; partition

key can be different from table PK
• Local Index: index key is composite only (sort key is in-

dexed key); partition key must be same as table PK

Distributed Commit Protocols
• ACID

– Atomicity: all or nothing
– Consistency: if each xact is consistent and DB starts

consistent, it ends consistent
– Isolation: Executions of xacts are isolated from each

other
– Durability: if a xact commits, its effects persist

Centralised DBMS Recovery Manager
Recovery Manager ensures atomicity and durability.
• Implementing Abort

– Write-Ahead Logging Protocol: flush uncommitted up-
date after before-image is flushed

– Undoes all updates by xact by restoring before-image
• Implementing Commit

– Force-At-Commit Protocol: commit a xact after after-
images of all updated pages are flushed (write commit
log, immediately flush)

• Implementing Restart
– Redo phase: redo all updates
– Undo phase: abort all active xacts

Failures in DDBMS
• Site failures

– fail-stop model: a site is either operational OR failed
– Partial site failure: some sites are operational, some

have failed
– Total site failure: all sites have failed

• Communication failures (all sites operational)
– lost messages, network partitioning (split-brain prob-

lem)
Two Phase Commit (2PC): voting + decision

(one state transition apart)
• ALL reach same global decision
• once voted, cannot change vote
• one abort, global = abort
• anyone can abort without voting
• commit => all voted commit
• no failure + all vote commit => commit
Log records are flushed / forced / synchronous writes
• Coordinator: Force write commit log record, don’t force

write abort log record
– (both) Recovers in WAIT: after timeout, will abort

• Participant must force write ready log record
– Recovers in INITIAL: will abort (but global might be

commit)

• Participant: Force write commit / abort log record (if voted
commit), don’t need to force write (if voted abort)
– (vote commit): recovers in READY, will revote commit,

coordinator might not be able to inform global decision
(because too long later)

– (vote abort): recovers in INITIAL, will abort -> OK!

Site Failures
• detected by timeouts
• Recovery Protocol (by server that failed)

– independent if can terminate without outside info
• Termination Protocol (by TC)

– non-blocking if can terminate without waiting for re-
covery

Cooperative Termination Protocol
• Let participants communicate with each other
• If P timeouts in READY: P asks for decision

– if any node is COMMIT / ABORT: P does that & tells
anyone who is READY

– if a node is INITIAL: it aborts, and replies ABORT
– if all are READY: blocking!

Three Phase Commit (3PC)

• Termination Protocol Changes
– Coordinator’s pre-commit: write commit log record +

send global-commit to operational participants
– Participants’ ready + pre-commit: execute Termination

Protocol X
• Recovery Protocol is same as 2CP
Termination Protocol 1
• Protocol

– Run leader-election to elect C
– C requests state from participants

∗ if any in COMMIT: Global-Commit to all
∗ if none in PRECOMMIT: Global-Abort to all
∗ else: Send Prepare-to-Commit to READY, receive

Ready-to-commit from these, then Global-Commit
to all
· 2 steps are needed: otherwise if it crashes again

and none in PRECOMMIT, second if is triggered
– if any participant timeout (coordinator failed), elect new

coordinator; any participant that fails is ignored; anyone
that fails and recovers CANNOT participate

• Total Site Failure:
– Recovering TMs blocked until a TM P recovers:

∗ P can recover independently (state = INITIAL,
ABORT, COMMIT)
· P notifies recovered TMs

∗ P was last TM to fail
· P executes termination protocol

• Without total site failure + comm. failure: non-blocking
• With total site failure: blocking
• With comm. failure: might be split-brain
Recover from earlier failure cannot rejoin: single node in PRE-

COMMIT, Coordinator & that node fail -> global will be Abort
(but if he rejoins, it should be commit)
Termination Protocol 2 (handles comm. failure)
• Protocol

– Run leader-election to elect C
– C requests state from participants

∗ if any in COMMIT: Global-Commit to all
∗ if any in ABORT: Global-Abort to all
∗ if any in PRECOMMIT + no COMMIT / ABORT

+ majority in READY / PRECOMMIT: Prepare-
to-Commit to ~PRECOMMIT; receive Ready-to-
commit
· if number of PRECOMMIT + Ready-to-commit

is majority: Global-Commit
· else: blocked

∗ if no COMMIT / ABORT + majority in INITIAL /
READY / PREABORT: Prepare-to-Abort to ~PRE-
BORT; receive Ready-to-abort
· if number of PREABORT + Ready-to-abort is

majority: Global-Abort
· else: blocked

∗ else: blocked
• Blocked TMs periodically re-attempt protocol; when failed

TM recovers: executes protocol
• Non-blocking as long as majority are operational

Concurrency Control
Concurrency Control Manager ensures isolation.
• VE if same read-froms & same final-writes
• VSS if VE to some serial schedule

– VSG - (Tj , Ti) if Ti reads-from Tj , or both write to same
variable and Ti does final-write

– VSG cyclic => not VSS
– VSG acyclic & (serial schedule from topo-sort is VE to

S) => VSS
• conflicting actions if

– at least one of them is write action
– and actions are from different transactions

• CE: every pair of conflicting actions are ordered in the same
way

• CSS: CE to some serial schedule (CSS => VSS)
– CSS ⇐⇒ CSG is acyclic

• blind write: Xact no read before it writes
– VSS & no blind writes => CSS

• Recoverable Schedule (essential): for every Xact T that
commits in S, T must commit after T′ if T reads from T

Lock-Based CC

Held
Requested - I S X

I Y Y N N
S Y N Y N
X Y N N N

• if lock request not granted, Xact is blocked, Xact is added
to O’s request queue

• 2PL => CSS: once release a lock, no more request
• Strict 2PL => strict & CSS: Xact must hold onto lock until

commit / abort
• Wait-For-Graph: Ti → Tj if Ti waiting for Tj (must remove

edge)
• Timeout mechanism: when Xact start, start timer, if time-

out, assume deadlock
• Deadlock Prevention - older Xact has higher priority (not

restarted on kill to avoid starvation)
– suppose Ti requests a lock held by Tj (Higher; Lower)
– wait-die (non-preemptive): Ti wait for Tj ; Ti suicide =>

may starve
– wound-wait (preemptive): kill Tj ; Ti wait for Tj
– if Tj dies, Ti still waits

MVCC (multiple ver.)
• read-only are never blocked / aborted
• update xacts not blocked by read-only xacts
• MVE if same read-from
• MVSS if MVE to some serial monoversion schedule

– monoversion: each read action returns the most recently
created object version

– VSS ⊆ MVSS (not other way round)
Snapshot Isolation (MVCC protocol)
• SI: Xact T takes snapshot of committed state of DB at start

of T
– can’t read from concurrent Xacts
– Concurrent if overlap start & commits
– Oi is more recent than Oj if Ti commit after Tj
– Concurrent Update Property: if multiple concurrency

Xact update same object, only one can commit (if not,
may not be serialisable)

• First Committer Win (FCW): check at point of commit
• First Updater Win (FUW) - locks only used for checking

(NOT lock-based)
– to update O: request X-lock on O; when commit / abort,

release locks
– if not held by anyone:

∗ if O has been updated by concurrent Xact: abort
∗ else: grant lock

– else: wait for T’ to abort / commit
∗ if T’ commit: abort
∗ else: use (if not held by anyone) case

• Write Skew Anomaly (not MVSS)
– Both Xact read from initial value

• Read-Only Xact Anomaly (not MVSS)
– A Read-Only Xact reads values that shouldn’t be possi-

ble
• SSI (Serialisable SI): produced by SI and is MVSS
• Garbage Collection: delete version Oi if exists a newer ver-

sion Oj st for every active Xact Tk that started after commit
of Ti , Tj commits before Tk starts (aka all active Xact can
refer to Oj)

Distributed CC
• Global schedule S for T and {S1 , ..., Sm} is VSS / CSS if

– Each local Si is VSS / CSS
– and local serialisation orders are compatible

• Centralised 2PL (C2PL)
– all locks are managed by central TM’s lock manager

• Distributed 2PL (D2PL)
– each site manages locks for their own stuff

Distributed Deadlock Detection
• Centralised approach

– Each site maintains local Wait-For-Graph

– One site is Deadlock Detector: others periodically trans-
mit local WFG to it

Centralised SI
• one site is Centralised Coordinator (responsible for assign-

ing timestamps)
• assume FUW & write locks are distributed
• Performing Transaction

– TC requests CC for start and lastCommit
– for read X, TC requests TM_A to send most recent X

wrt lastCommit
– for write X, TC requests TM_A; might be blocked

• For committing xact T:
– TC requests CC for commit
– TC executes modified 2PC

∗ in voting phase: TC includes start & commit in
PREPARE messages

∗ when participant receives PREPARE, it checks for
WW-conflicts between T and committed concurrent
xacts (votes abort if any)

Producible?
Need to check S2PL & SI in local schedules, and then consider
global schedule across sites.
• S2PL: not global CSS => not S2PL; check for S2PL locally
• SI: if each object updated by at most one xact (xacts have

disjoint write-sets) => can be SI
– else: need to consider global schedule across sites to

check for concurrency

Data Replication
Improve system availability + performance + scalability
• one-copy serialisable (1SR) if same effect as one-copy DB

– equivalence: same read from, weak final write (only one
replica needs to be the same)

– checking 1SR: similar to globally serialisable,
∗ but need to check read from initial
∗ and check “in-between” writes (e.g. W_1, R_3,

W_2)
• strong mutual consistency if all replicas have identical val-

ues
Updating Replicas
• Statement-based replication: forward all SQL statements
• Write-ahead Log (WAL) shipping - file-based OR record-

based (streaming)
– Physical replication: specify page & byte offset to

change
– Logical replication: one logical log record for each af-

fected tuple
• Application-level replication

– Use triggers & stored procedures; more flexible but
higher overhead

Replication Protocols
Assume S2PL + statement-based replication
• Eager (sync) update - always 1SR: updates all replicas

within xact
• Lazy (async) update - may not be 1SR: updates only one

replica now; rest async via Refresh Xacts (need to be in-
order)
– probably not 1SR because xacts won’t read from one

another (will read from initial state)
• Centralised techniques: applied to master copy first before

propagating to other slave copies
• Distributed techniques: update is applied to any copy first
Note: reading local is best; when writing to all nodes, need to
write to self too
Quick identification:
• Refresh xacts => lazy
• For some object, if read & write in different servers =>

centralised (always write in master site)
Eager Primary Copy (Centralised)
• For each object, one copy is primary (different objects can

be in different sites)
• Each master site runs lock manager for logical object (for

all replicas)
• For read: req lock from master site, then read from any node
• For write: req lock from master site, then write to all nodes
Eager Distributed
• Each site runs lock manager on physical object (for local

replica)
– Need to request for S-lock and X-lock (blocks if not

available)
• Deadlocks are more common
• For read: req lock + read from any node
• For write: req lock + write to all nodes
Lazy Single-Master (Centralised)
• Single master site for all objects
• For read: req lock from master, then read from any node
• For write: req lock from master + write to master now
• For commit: informs master, master releases locks, gets

X-locks for refresh xacts & propagates async
– Must be in same order at all sites, ordered by commit

timestamp
– However, doesn’t guarantee 1SR, even with single object

+ single xact (because don’t read your own writes)
Lazy Distributed
• Each site runs lock manager on physical object (for local

replica)
• For read: req lock + read from any node
• For write: req lock + write to any node
• For commit: release locks, propagates async (other sites

grant X-lock for themselves)
– Inconsistent updates: requires reconciliation

∗ Last-Writer-Wins heuristic: accept the last refresh
xact (but only correct for blind writes)

Handling Failures
• detect failures using use timeout mechanism
• Slave Failure

– Lazy Single-Master: synchronise unavailable replicas
later

– Eager Single-Master: change ROWA to ROWAA (Read-
One / Write-All Available)
∗ Synchronise unavailable replicas later

• Master Failure

1. Wait for master site recovery (bad for availability)
2. Elect new master site (must have majority)

CAP Theorem
• Data Consistency
• System Availability
• Tolerance to Network Partitions
When there’s partitioned network:
• forfeit consistency: resume execution on selected partition

(might be inconsistent if partition does not have old master
as it lacks latest update)

• forfeit availability: wait for network to recovery

Quorum Consensus
Handles fault tolerance without replicated state machine.
• Each copy has non-negative weight Wt(Oi)

– Wt(O) = total weight
• Read threshold Tr(O); Write threshold Tw(O)
• Tr(O) + Tw(O) > Wt(O): read always reads up-to-date

write
• 2 ∗ Tw(O) > Wt(O): write always overwrites up-to-date

write
• For read: acquire S-lock on read quorum, read all copies &

return highest version number
• For write: acquire X-lock on write quorum, write all copies

& update version number = max(n) + 1
• k-tolerant: can tolerate failure of up to k sites

– Must hold: weights of n − k sites ≥
max{Tw(O), Tr(O)}

Consistency
Consistency Levels
• Eventual Consistency: returns any value that was written

(might not be valid state)
– If single variable, always valid state

• Consistent Prefix: returns all writes ≤ k (must be valid
state)

• Bounded Staleness: returns all writes performed ≤ tread −
T, where T is time period of staleness, newer writes may
be visible

• Causal Consistency: T1 < T2 (T1 causally precedes T2) if
any are true:
– T2 is executed after T1 in same session
– T2 reads from T1
– T1 & T2 has same write & T2 is final write
– transitivity of causal

• Strong Consistency: returns latest value
• Monotonic Reads: second read returns same OR more re-

cent
• Read My Writes
Tradeoffs
• Strength = size of set of allowable results
• Performance = read latency
• Availability = likelihood of success (with server failures)
Pileus
• Lazy Primary-Copy Replication

– Primary sites store master copies: all updates performed
here & ordered by commit timestamps

– Secondary sites: async propagation
• Distributed SI
Within a session, xacts are serial, defines scope for RMW, MR.
* Pileus’s eventual = consistent prefix
Pileus Multiversion Storage
• Each server:

– key-range of keys managed by me
– store = set of (key, value, timestamp)
– highTS = commit timestamp of latest xact by me
– lowTS = timestamp of latest pruning operation

• Each primary server (only this is involved in 2PC):
– logical clock
– pending (awaiting commit) = list of (Put-set, proposed

timestamps)
– propagating (after commit) = queue of (Put-set, commit

timestamp)
• Pruning Old Versions by increasing lowTS

– retain all versions with commitTS > lowTS OR latest
version where commitTS ≤ lowTS

Pileus Client
• Each application client:

– each server: key-range, latency, highTS, mapping of
real-time to logical time

– each session: commit timestamps of previous Puts +
previous Gets

• Put(key, value): buffered at client (visible to Gets in
T, but not for ~T)

• Client’s Get(key): if rejected: restart xact (if primary),
change server (if secondary)

• Server processing of Get(key, readTS):
1. Accept if readTS ≥ lowTS (if primary) OR readTS in

[lowTS, highTS] (if secondary)
2. S updates logical clock (if primary)
3. S returns (v, v.commitTS, S.highTS) where v is most

recent and v.commitTS ≤ readTS
• BeginTx(consistency, key-set):

1. Get MARTS(T) - minimum acceptable read timestamp
2. (if key-set given) for each ki in key-set, pick closest

server that:
– has key
– highTS >= MARTS (if primary, ignore this rule)
– tie break by lower latency, then higher highTS

3. readTS(T) = min highTS among the servers picked for
each key

• EndTx(consistency, key-set) for committing (only
primaries):
– Client selects Commit Coordinator (CC), and sends it

readTS + Put-set + largest commit timestamp (of all
Gets / Puts)

– CC partitions Put-set for participants + send Pre-
pareCommit with subset

– CC updates local clock to max(local, largest commit
timestamp + 1)

– On receiving PrepareCommit, each participant:
∗ proposedTimestamp = (local clock)++
∗ append (local Put-set, proposedTimestamp) to pend-

ing list

∗ reply with proposedTimestamp
– CC picks commitTS = max of proposedTimestamp &

sends to all
– On receiving commitTS, each participant:

∗ updates local clock = max(local, commitTS + 1)
∗ validate commit using SI
∗ replies commit / abort

– if all commit: write commit log & flush (commit times-
tamp + Put-set), informs client and participants

– On receiving confirmation, each participant:
∗ processes local Put-set + add to propagating (async)
∗ when done: inform CC + remove from pending

Blocked by Pending Transaction T’
Block if possible for commitTS(T’) ≤ commitTS(T)
• Get(k) for T: if T’ updated same key k &

T’.proposedTimestamp ≤ readTS(T)
• Validation request for T: both updated same key &

T’.proposedTimestamp ≤ commitTS(T)
• Replicating update for T: T’.proposedTimestamp ≤ com-

mitTS(T)

MARTS(T) - timestamp of version (not xact)
• Strong Consistency (only consider primary servers):

– let maxTS(ki) be max timestamp among all versions of
ki in primary server of ki

– MARTS = max of maxTS(ki) for all ki in key-set
• Eventual Consistency: 0
• Bounded Consistency: realToLogicalTime(client clock - t)
• Causal Consistency: max timestamp of all previous Gets

and Puts in current session
• Monotonic Reads: max timestamp of all previous Gets in

current session (key-set doesn’t matter)
• Read My Writes: max timestamp of previously committed

Puts in current session for objects accessed by T

Raft Consensus Algorithm
• Use cases:

– replicate logfile of coordinator in 2PC
– replicate locks in centralised lock

• Timers
– Election Timer: follower becomes candidate OR candi-

date restarts an election if timeout
– Leader Timer: leader resends RPC to follower if timeout
– Client Timer: client resends command if timeout

• Election Safety Property: at most one leader per term
– each server only votes once
– must get majority votes

• Election Liveness Property: some leader must eventually
be elected
– Each server chooses Election Timer randomly from

[T,2T]
– Good if T » broadcast time (average RTT)

• Persistent State (on disk) for all servers:
– currentTerm: latest term server has seen
– votedFor: in current term (can be null)
– log[]: log entries (index, term, command); 1-indexed

• RequestVote(candidateId, term,
lastLogIndex, lastLogTerm), server R replies
as follows:
1. if RPC.term < R.term: reply (R.term, false)
2. if RPC.term > R.term AND p:

– R.term = RPC.term; R.votedFor = RPC.candidateId
– reply (R.term, true)

3. if RPC.term = RPC.term AND r.votedFor = NULL
AND p:
– R.votedFor = RPC.candidateId
– reply (R.term, true)

4. if RPC.term = RPC.term AND r.votedFor =
RPC.candidateId (previous reply lost): reply (R.term,
true)

5. else:
– if RPC.term > R.term: R.term = RPC.term;

R.votedFor = NULL
– reply (R.term, false)

• p: R is not more complete than candidate
– X is more complete than Y if EITHER:

∗ X.lastLogTerm > Y.lastLogTerm
∗ OR X.lastLogTerm = Y.lastLogTerm AND

X.lastLogIndex > Y.lastLogIndex
• AppendEntries(leaderId, leaderTerm,

leaderCommitIndex, prevLogIndex,
prevLogTerm, logs[]): used for heartbeat too
1. if leaderTerm < F.term: reply (F.term, false)
2. if leaderTerm > F.term: F.term = leaderTerm
3. if logs[] not empty:

– If preceding don’t match: reject & let leader retry
with lower index

– Kill extraneous entries and append
4. if leaderCommitIndex > F.commitIndex:

F.commitIndex = min(leaderCommitIndex,
F.lastLogIndex)

5. reply (F.term, true)
• Leader Completeness Property: if a log entry is committed

in a given term, then that entry will be present in the logs
of future leaders

• State Machine Safety Property: if a server has applied a log
entry, no other server will apply a different log entry for
same index

Normal Operations
• Client sends command to leader; Leader appends command

to log; Leader sends AppendEntries to all followers
• Once committed:

– Leader executes & returns result to client
– Leader notifies followers of committed entries in future

AppendEntries (then followers will execute it)
• Leader Append-Only Property: leader never overwrites /

deletes entries in its log
• Log Matching Property: if two entries in different logs have

same index + same term
– => stores same command
– => logs in all preceding entries are identical

Committed Log Entries
• Directly committed once leader that created the entry has

replicated it to a majority of servers
– NOT counted even if same server re-elected

• Indirectly committed if preceding a directly committed
commit

• Committed entries are guaranteed to be in ALL future lead-
ers

Log Inconsistencies
• Missing entries: replication takes time
• Extraneous entries: will be removed by future AppendEn-

tries
Volatile State
• On all servers (init to 0):

– commitIndex: index of highest log entry known to be
committed

– lastApplied: index of highest log entry applied to state
machine

• On leaders (re-init after election):
– nextIndex[] for each server (init to leader.lastLogEntry

+ 1 -> assume all are replicated)
– matchIndex[] for each server: highest index that’s guar-

anteed to be replicated (init to 0)
Raft Rules
• For all servers:

– if commitIndex > lastApplied: lastApplied++; apply
logs[lastApplied]

– if request / response contains term > currentTerm: cur-
rentTerm = term; convert to follower

• For leaders:
– Upon election: send initial + periodic heartbeats
– If received command from client: apply to local log;

respond to client after applying command
– if lastLogIndex ≥ nextIndex for follower (update fol-

lower’s state):
∗ Send AppendEntries one-by-one; if fail: decrement

& retry
– if knows command has replicated to majority: update

commitIndex

Distributed Query Optimisation
Cost Estimation

• SF(σA=v(R)) ≈ 1
|πA (R)| (uniformity assumption)

• SF(σA<v(R)) take ratio
• SF(σp1∧p2 (R)) ≈ SF(σp1 (R)) ∗ SF(σp2 (R)) (indepen-

dence)
• SF(R ▷◁ S) ≈ 1/(max(|πA(R)|, |πA(S)|)) (inclusion)
• SF(R ⋉A S) ≈ |πA (S)|

|domain(A)| (inclusion)

Communication cost = Tfixed overhead per msg * (number of msgs)
+ Tone data unit * (total size of data)
Semijoin Optimisation
Eliminate dangling tuples (doesn’t join with any tuple)
Assume |R| < |S| and R ⋉A S

• Cost = TMSG + TTR ∗ |πA(S)|
• Benefit = TTR ∗ |R| ∗ (1 − SF(R ⋉A S))

– SF(R ⋉A S) = SFSJ(S.A)

Semijoin is beneficial if benefit > cost.
• Two query plans are comparable if satisfy ALL:

– both plans have same output schema (semijoin and join
NO!)

– AND both plans execute final operator on same server
– AND both plans either unordered or sorted in same

order
• Plan is better if comparable and lower cost

for i := 1 -> n:
opt({R_i}) = accessPlans(R_i) # index scan, ...
prunePlans(opt({R_i}))

for i := 2 -> n: # for increasing subsets
for S subseteq {R_1, ..., R_n} st |S| = i:
opt(S) = None
for O propersubset S: # join & SJ all pairs
for P propersubset O: # enumerator extension
other = opt((S - O) union P) # re-add P
opt(S) += joinPlans(opt(O), other, 0)
opt(S) += semijoinPlans(opt(O), other, 0)
prunePlans(opt(S))

ts = 0 # timestamp
while True: # fix-point iteration
S' = new plans with timestamp=ts (prev loop)
for O subseteq S & O is not None:
opt(S) += joinPlans(S', opt(O), ts+1)
opt(S) += semijoinPlans(S', opt(O), ts+1)
prunePlans(opt(S))

ts++
if S' is None: break

return opt({R_1, ..., R_n})

• Enumerator Extension: left & right operands may not be
disjoint

• Avoiding redundant joins & semijoins
– Reasonable query plan heuristic: for each leaf-to-root

path, each predicate only appears once
• Fix-point Iteration: some plans may not be complete

– Complete = output schema is same as not using semijoin
• Vertical Pruning

– Comparable plans for opt({. . . }) can be found outside
the entry (because of incomplete plans)

– Need to prune and compare across entries

	Data Partitioning
	Fragmentation Techniques
	Derived Horizontal Fragmentation
	Vertical Fragmentation
	Complete Partitioning wrt Query
	Minterm Predicate Partitioning

	Query Processing
	Localisation Program
	Reduction Techniques
	Distributed Join Strategies R \bowtie_A S

	Storage
	LSM (Log-Structured Merge) Storage
	Compaction of SSTables
	Searching LSM
	Optimising SSTable Search

	Indexing
	DynamoDB

	Distributed Commit Protocols
	Centralised DBMS Recovery Manager
	Failures in DDBMS
	Two Phase Commit (2PC): voting + decision
	Site Failures
	Cooperative Termination Protocol

	Three Phase Commit (3PC)
	Termination Protocol 1

	Termination Protocol 2 (handles comm. failure)

	Concurrency Control
	Lock-Based CC
	MVCC (multiple ver.)
	Snapshot Isolation (MVCC protocol)

	Distributed CC
	Distributed Deadlock Detection
	Centralised SI

	Producible?

	Data Replication
	Updating Replicas
	Replication Protocols
	Eager Primary Copy (Centralised)
	Eager Distributed
	Lazy Single-Master (Centralised)
	Lazy Distributed

	Handling Failures
	CAP Theorem

	Quorum Consensus
	Consistency
	Consistency Levels
	Tradeoffs
	Pileus
	Pileus Multiversion Storage
	Pileus Client
	Blocked by Pending Transaction T’

	Raft Consensus Algorithm
	Normal Operations
	Committed Log Entries
	Log Inconsistencies
	Volatile State
	Raft Rules

	Distributed Query Optimisation
	Cost Estimation
	Semijoin Optimisation

