
Jin Wei CS4231 Finals Notes

Mutual Exclusion

no starvation => progress

Peterson's Algorithm

Mutual exclusion for 2 processes. Can be extended to n processes by using a tournament tree of Peterson's Algorithm: must

acquire from leaf to root and release from root to leaf!

Peterson's Algorithm Correctness

Mutual Exclusion

Proof by contradiction

Progress

No starvation

Lamport's Bakery Algorithm

(*required) mutual exclusion: no more than one process in the critical section

progress: if one or more process wants to enter and if no one is in the critical section, then one of them can eventually enter

the critical section

aka resource is fully utilised

only need to consider sections of the algorithm that can be blocked

no starvation: if a process wants to enter, it can eventually always enter

bool wantCS[0] = false;
bool wantCS[1] = false;
int turn = 0;

// Process 0
void RequestCS() {
    wantCS[0] = true;
    turn = 1; // let it be `other`'s turn to prevent starvation
    // wait if `other` wants and it's their turn
    while (wantCS[1] == true && turn == 1);
}
void ReleaseCS() {
    wantCS[0] = false; // stop wanting it
}

// Process 1 is mirrored

Case turn == 0 when both are in CS

then wantCS[0] = wantCS[1] = true

since turn == 0 , P0 executed turn = 1  before P1 executed turn = 0

which means P1 must have seen wantCS[0] == false  because turn == 0  currently

but wantCS[0] = true  was set by P0

Case turn == 1 is symmetric

if both want to enter

Case turn == 0

then P0 can enter

Case turn == 1 is symmetric

if only one wants to enter, WLOG P0

wantCS[1] = false , P0 will fall through

if P0 is waiting and P1 in CS

after P1 exits the CS, it will set wantCS[1] = false  so P0 can fall through

if P1 immediately wants to re-enter and sets wantCS[1] = false  immediately, it is still fine because it must also set turn
= 0  before falling through itself (and it can't fall through since turn = 0 )



Mutual exclusion for n processes.

for n processes:

Dekker's Algorithm

Synchronisation Primitives

Semaphore Semantics

Semaphores can be used to implement monitors, and vice versa.

get a number

get served when all processes with a lower number has been served

bool choosing[N]; // choosing[i] = true <=> process i is getting a number
int number[N]; // number[i] => number of process i (if number is 0, process doesn't wanna be served)

void RequestCS(int id) {
    choosing[id] = true; // "weak mutex"
    for (int j = 0; j < n; j++) {
        temp = number[j];
        if (temp > number[id]) {
            number[id] = temp;
        }
    }
    number[id]++; // max(everyone else) + 1
    // won't be correct because everyone is racing
    // but it's fine

    // wait for processes with a smaller number OR *might* have a smaller number
    for (int j = 0; j < n; j++) {
        while (choosing[j] == true);
        // compare by (number, id)
        while (number[j] != 0 && Smaller(number[j], j, number[id], id));
    }
}
void ReleaseCS(int id) {
    number[id] = 0;
}

bool wantCS[0] = false;
bool wantCS[1] = false;
int turn = 1;

void RequestCS(int i) {
    // turn doesn't change in RequestCS

    int j = 1 - i;
    wantCS[i] = true;
    while (wantCS[j]) {
        if (turn == j) {
            // temporarily release so the other guy can enter
            wantCS[i] = false;
            while (turn == j);
            wantCS[i] = true;
        }
    }
}

void ReleaseCS(int i) {
    turn = 1 - i;
    wantCS[i] = false;
}

// both of these operations are done ATOMICALLY!!
void P() {



The queue is not FIFO, it has an arbitrary ordering. *unless otherwise specified by the API.

Dining Philosopher Problem

Need to avoid cycles or have a total ordering of the chopsticks to prevent deadlocks

Monitor Semantics

Semaphores can be used to implement monitors, and vice versa.

Every object in Java is a monitor.

assume that the monitor-queue  is starvation-free for CS4231 because we have no control over this.

NOTE: the wait-queue  is not FIFO, so, we must maintain our own FIFO queue if we need FIFO

Nested Monitors

Nested monitors in Java are nasty (other implementations might differ). See the following.

    if (value == false) {
        add myself to queue;
        block;
    }
    value = false;
}
void V() {
    value = true;
    if (queue is not empty) {
        // exactly **ONE** process is woken
        wake up one *arbitrary process* on the queue;
    }
}

void RequestCS() { P(); }
void ReleaseCS() { V(); }

synchronized (object) { // enters monitor
    object.wait();
    object.notify();
    object.notifyAll();
} // exits monitor

enter monitor

if no one is in the monitor: I will enter

otherwise: I enter the monitor-queue  and block

exit monitor

if monitor-queue  is non-empty: unblock one arbitrary process

object.wait()  -> this is one atomic operation

add to wait-queue

and block

object.notify()
if wait-queue  is empty, pick one arbitrary process from wait-queue  and unblock it

object.notifyAll()
unblock all processes on the wait-queue

this is only for Java-style, not Hoare-style

Hoare-style: when you notify , someone else will takeover

possibly can use if (x == 1) object.wait();

Java-style: when you notify , you will continue running

the other guy wakes up and immediately re-enters the queue (nothing will be done!!)

should probably use while (x == 1) object.wait();

// P0
synchronized (x) {
    synchronized (y) {
        y.wait();



Use flags to avoid having to use nested monitors. See the starvation-free Reader-Writer solution below.

Producer-Consumer Problem

Note that notification will be lost if no one is waiting! Doesn't matter for this Producer-Consumer solution tho.

Reader-Writer Problem

        // only monitor-lock on y is released
        // still holds monitor-lock on x
    }
}

// P1
synchronized (x) { // P1 cannot acquire monitor-lock on x
    synchronized (y) {
        // never runs
        y.notify();
    }
}

void producer() {
    synchronized (buffer) {
        if (buffer.isFull()) {
            buffer.wait();
        }
        add to ;
        if (buffer WAS empty) {
            buffer.notify();
        }
    }
}

void consumer() {
    synchronized (buffer) {
        if (buffer.isEmpty()) {
            buffer.wait();
        }
        remove from buffer;
        if (buffer WAS full) {
            buffer.notify();
        }
    }
}

buffer

// this solution will starve writers!

void writeFile() {
    synchronized (object) {
        while (numReader > 0 || numWriter > 0) {
            object.wait();
        }
        numWriter = 1;
    }
    write to ;
    synchronized (object) {
        numWriter = 0;
        object.notifyAll(); // wake up all readers
    }
}

void readFile() {
    synchronized (object) {
        while (numWriter > 0) {
            object.wait();
        }
        numReader++;
    } // must leave the monitor, so other readers can enter!
    write to ;

file

file



To be starvation-free: maintain an explicit queue and let each thread wait on its own monitor. Avoid waiting on a common object

(because there will be no guarantee of FIFO). Use a flag to handle the case where you notify  before the other guy calls wait .

    synchronized (object) {
        numReader--;
        object.notify(); // wake up a writer
        // can be proven that only writers are waiting!
        // proof by contradiction: suppose a reader gets notified, then it is blocked, but it shouldn't be 
blocked because `numWriter == 0`
    }
}

// this solution is starvation-free!!

Queue queue;

void writeFile() {
    Writer w = new Writer();

    synchronized (queue) {
        if (numReader > 0 || numWriter > 0) {
            w.okToGo = false;
            queue.add(w);
        } else { // no writers and no readers
            w.okToGo = true;
            numWriter = 1;
        }
    }
    synchronized (w) {
        if (!w.isOkToGo) {
            w.wait();
        }
    }

    write to ;

    synchronized (queue) {
        numWriter = 0;
        if (!queue.isEmpty()) {
            // remove a single writer OR a batch of readers from the queue
            // in a FIFO way
            for (auto request : objects) {
                numWriter++ OR numReader++;
                synchronized (request) {
                    // important because this can be called **between** line 16 and line 17
                    request.okToGo = true;
                    request.notify();
                }
            }
        }
    }
}

void readFile() {
    Reader r = new Reader();

    synchronized (queue) {
        if (numWriter > 0 || !queue.isEmpty()) {
            // queue is only non-empty if there is at least
            // one writer waiting
            r.okToGo = false;
            queue.add(r);
        } else { // no writers waiting or running
            r.okToGo = true;
            numReader++;
        }
    }
    synchronized (r) {
        if (!r.isOkToGo) {
            r.wait();

file



Consistency

Consistency specifies what behaviour is allowed when a shared object is accessed by multiple processes.

Something is consistent if it satisfies the specification.

Sequential Consistency

Results should be the same as if all operations are executed in some sequential order (as if it was ran on a simple single-core

system).

Operation: a single invocation-response pair of a single method of a single shared object by a process.

A history H is a sequence of invocations and responses ordered by wall clock time. All invocations in H must have their responses

in H too.

A history H is sequential if

A history H is legal if

Sequential ⊆ Legal.

Two histories are equivalent if they have exactly the same set of events

A history H is sequentially consistent if it is equivalent to (i.e. same result as) some legal sequential history S that preserves

process order (partial ordering among all events).

        }
    }

    write to ;

    synchronized (queue) {
        numReader--;
        if (numReader > 0) return; // only last reader runs the following code

        if (!queue.isEmpty()) {
            // remove a single writer OR a batch of readers from the queue
            // in a FIFO way
            for (auto request : objects) {
                numWriter++ OR numReader++;
                synchronized (request) {
                    // important because this can be called **between** line 16 and line 17
                    request.okToGo = true;
                    request.notify();
                }
            }
        }
    }
}

file

Two invocation events are the same if invoker, invokee, parameters are the same.

Two response events are the same if invoker, invokee, response are the same.

any invocation is immediately followed by its response

no interleaving

otherwise: it is concurrent

all responses satisfy the sequential semantics (acts like there's one process)

(H | p) is process p's subhistory of H.

this is always sequential (because of process order)

(H | o) is object o's subhistory of H.

all responses are the same (because responses are part of the event)

ordering of events can differ

same result as some single-core version (invocation-response pair happens immediately)

preserve program order



Sequential consistency is NOT a local property.

Linearizability

A history H is linearizabile if

(^ two equivalent definitions)

Sequential Consistency ⊆ Linearizability

Linearizability is a local property: H is linearizable <=> for any object x, (H | x) is linearizable. Proof:

Consistency for Registers

A register is atomic if the implementation always ensures linearizability of the history.

A register is called regular if

Regular DOES NOT imply Sequential Consistency.

Sequential Consistency DOES NOT imply Regular.

1. execution is equivalent to (i.e. same result as) some execution such that each operation happens instantaneously (called

linearization point).

2. execution is equivalent to (i.e. same result as) some legal sequential history S AND S preserves the external order in H

aka sequentially consistent + preserves external order

external order (occurred-before order): o1 < o2  if response of o1 happens before invocation of o2

aka we can only reorder things that are concurrent

⟹

construct a graph, then it is easy to show

⟸

construct graphs for all (H | x)

show that we can join them with the cross edges

Lemma: resulting directed graph is acyclic (prove using contradiction)

any topological sorting gives us a linearizable H

when a read does not overlap with any write, the read returns the value written by one of the most recent writes

when a read overlaps with one or more writes, the read returns the value written by one of the most recent writes OR the

value written by one of the overlapping writes



A register is safe if

Safe DOES NOT imply Sequential Consistency.

Sequential Consistency DOES NOT imply Safe.

To find "most recent writes":

Clocks

Assumes the following:

Goal of clocks: Capture event ordering even if the users do not have physical clocks.

Happened-before

Happened-before relationship (a partial order)

Note that concurrent with is not transitive!

(Integer) Logical Clock

Each process maintains a single integer.

when a read does not overlap with any write, the read returns the value written by one of the most recent writes

when a read overlaps with one or more writes, it can return anything

1. find the write with the latest response time

2. any write that is concurrent with (1) is "most recent"

processes can do these:

local computation

send / receive a single message to a single process

no atomic broadcast (must be emulated using point-to-point messages)

communication model

point-to-point messages

error free (no corruption + no message loss) + infinite buffer

potentially out of order

process order

send-receive order

transitivity

increment local_time at each local computation and send event

when sending a message, attach local_time

when receiving a message, local_time = max(local_time, sender.time) + 1

any f  works as long as f(x, y) > x  and f(x, y) > y



Event s happen before t ⟹  logical clock of s < logical clock of t

^ Use the definition to prove

logical clock of s < logical clock of t ⟹ s happened before t OR they are concurrent

Vector Clock

Each process maintains a vector of size n, where n is the number of processes.

local_vector[i]  is known as the principle entry.

Event s happen before t ⟺  vector clock of s < vector clock of t

^ (⟹ ) Use the definition to prove

^ (⟸ ) Consider two cases: (1) on same process; (2) there was a sequence of events to propagate the clock

To convert Vector Clock to Logical Clock: it is sufficient to take the summation of all the entries in the vector clock. (taking

maximum is not correct)

Matrix Clock

You are able to know what other processes (definitely) have seen.

Each process maintains n vector clocks: one for each process.

local_matrix[i]  is the principle vector.

increment local_vector[i]  at each local computation and send event

when sending a message, attach local_vector

when receiving a message:

local_vector = pairwise_max(local_vector, sender.time)

local_vector[i]++

vectors v1 < v2 ⟹  all fields in v1 are ≤ all fields in v2 AND at least one field in v1 is < than the corresponding field in v2

this < relationship is not a total order. Example: (1, 0) and (0, 1)

this < relationship is transitive (because happens-before is transitive)

for the principle vector, we do exactly the same thing as in Vector Clock

for other vectors in the matrix:

perform pairwise-max to update local copy



Total Ordering Mechanism

Use the partial order created by one of the clock systems. Then, tie-break with one of the following ways:

Snapshot

Global Snapshot: a set of events such that if e2 is in the set and e1 is before e2 in process order, then e1 must be in the set

(intuitively: a snapshot of local states on n processes such that the global snapshot could have happened sometime in the past)

Consistent Global Snapshot: Global Snapshot such that if e2 is in the set and e1 is before e2 in send-receive order, then e1 must

be in the set

(alternatively: a set of events such that if e2 is in the set and e1 happened before e2, then e1 must be in the set)

For any prefix of a process, it is always possible to construct a Consistent Global Snapshot:

If G and H are both CGS, G ∩ H and G ∪ H are both CGS.

Proof by playing with definition of set intersection, union + CGS.

Chandy & Lamport's Snapshot Protocol

NOTE: messages are ordered and guaranteed to be FIFO through message numbers!

Each process is either

Trigger the protocol on one process p:

Need to capture "on-the-fly" application messages.

There are only four possible cases of a message M in relation to capturing snapshot

1. Tie-break using the process ID.

1. unfair because it would favour those with a lower process ID

2. Tie-break randomly.

1. Tie-break by using the time to seed a random number generator.

1. You have to re-seed it every time, or you will run into the same problem as solution (1).

2. Generate a random ordering of the process IDs.

3. Use this random ordering to tie-break.

such that all events in that prefix is in the CGS

and all events that are not in the prefix are not in the CGS.

red (has taken local snapshot)

OR white (has not taken local snapshot)

1. j turns from white -> red

2. it immediately sends out n − 1 Marker messages to all other processes

3. upon receiving first Marker message, a process will turn from white -> red and propagate the Marker message

1. case 1 (M is captured by both)

sent before local snapshot on sender

received before local snapshot on receiver

2. case 2 (M is not captured by both)



Case 4 is handled by appending these on-the-fly messages to the local snapshot.

Lamport's Logical Clock to compute CGS

Ordering

Causal Order

Causal order: if s1 happened before s2, and r1 and r2 are on the same process, then r1 must be before r2.

(pessimistically assume that s1 caused s2)

Each process maintains a n by n matrix M (NOT the matrix clock).

M[i, j] is the number of messages sent from i to j as known by the local process

Proof:

Causal Ordering of Broadcast Messages

Exactly the same as point-to-point.

Total Ordering of Broadcast Messages

Total ordering only applies to broadcast messages.

Atomic broadcast: all messages delivered to all processes in exactly the same order. (impossible in asynchronous system)

Total does NOT imply Causal

Causal does NOT imply Total

sent after local snapshot on sender

received after local snapshot on receiver

3. case 3 (not CGS)

sent after local snapshot on sender

received before local snapshot on receiver

impossible because of FIFO

4. case 4 (need to handle this case separately *)

sent before local snapshot on sender

received after local snapshot on receiver

possible because receiver turned red from someone else before receiving this sender's marker

cut(e) = { f | f has smaller logical clock value than e }

for any event e, cut(e) is a consistent global snapshot

just use definition of GS and CGS

because of process order & send-receive order

this will be maintained by the logical clock algorithm

if i sends a message to j:

on i: M[i, j] + +

piggyback M

upon receiving the message with T , set M = pairwise-max(M,T) if

T [k, j] ≤ M[k, j] for all k ≠ i

AND T [i, j] = M[i, j] + 1

Intuitively, M[i, j] must be sent sequentially and I have seen whatever stuff that I'm supposed to have seen

show that if s1 happens before s2, r2 will not happen before r1 (show using properties of matrix)

case 1: s1 and s2 on same process

case 2: s1 and s2 on different processes

show that at any given time (when all messages have been received, but not delivered), at least one message can be

delivered, induction will handle everything else

define set of successor messages:

the next-to-deliver message from each sender (if the sender has an undelivered message)

define top successor message:

at least one of the successor messages has no other send events that happened-before it

any of these top successor messages can be sent



Coordinator for Total Ordering

BAD! because this is centralised

Such a Total Order would not necessarily be Causal Order because messages sent to the coordinator are not necessarily FIFO.

Skeen's Algorithm for Total Order Broadcast

Every process maintains a logical clock + message buffer for undelivered messages.

Messages are delivered from the buffer if:

For me to send a message:

Leader Election

Leader Election on Anonymous Ring

Leader Election on anonymous ring is impossible with deterministic algorithms.

Leader Election on an Anonymous Ring with Unknown Size

This is impossible, even with randomised algorithms.

send message to coordinator

coordinator assigns sequence number

coordinator broadcasts to all

messages delivered according to sequence number

all messages have been numbered

the message has the smallest number

1. Broadcast to all processes

2. All processes will reply with their logical clock value

3. I pick the maximum as the message number

4. I broadcast this back

Ring topology

simplest topology is line topology

but ring topology doesn't break from a single edge failure

so, we consider ring topology

No unique identifiers

the nodes are completely indistinguishable

same initial state

same algorithm on each node

same steps are taken

consider worst case of all nodes executing the same step at the same time and speed

we only need to consider the algorithm failing for one case

same final state

either the algorithm fails because no leader is found

or everyone claims they're the leader.

assume that such a algorithm exists



Leader Election on an Anonymous Ring with Known Size

Protocol will terminate with a probability of 1 (doesn't mean it always terminates). Prove using good phases and probability. After i

-th good phase, there are n − i winners left.

Leader Election on a Ring (Chang-Roberts Algorithm)

Each node has a unique identifier.

Nodes only send messages clockwise.

Each node acts independently on their own.

Performance:

For distributed systems, network communication is the bottleneck! Performance is described by message complexity: total

number of messages sent by all the nodes.

Leader Election on General Graph (n is known)

Leader Election on General Graph (n unknown)

model the randomised algorithm as a deterministic algorithm that takes in a random bit string as one of its input

consider two rings

ring 1: exactly one node P1

ring 2: two nodes P1 and P2

terminates with probability 1 => exists some input that P1 can terminate (for ring 1)

we use the same input for ring 2: (note: both rings are indistinguishable)

then, P1 and P2 must both declare they are the leaders

contradiction

done in phases, all nodes start at phase 1

each message has the phase number attached

in each phase:

each node picks a random ID, then run Chang-Roberts

winners proceed to the next phase; losers will only forward messages from now on

winner <=> sees its own ID after exactly n hops

stop when there is a single winner

a node sends election message with its own ID clockwise

election message is forwarded if message.ID > own.ID

else ignore it

a node becomes the leader if it sees its own election message

in the best case, with n rings: n + n − 1 = Θ(n) messages

consider sorted clockwise

n messages sent / forwarded (of the winner's election message)

n − 1 messages, one each by the other nodes

in the worst case, with n rings: (n ∗ (n + 1))/2 = Θ(n2) messages

consider sorted anti-clockwise

in the average case, O(n logn) (probability MATH)

Complete Graph

send own ID to all other nodes

wait for all n − 1 other IDs

if you're the biggest, you win

Any connected graph

flood your ID to all other nodes

with forwarding of message

won't relay if relayed before

wait for all n − 1 other IDs

if you're the biggest, you win

Complete Graph

no such case because you're connected



Distributed Consensus

5 versions of Distributed Consensus

Distributed Consensus Concepts

Crash Failures

Byzantine Failure

Reliable Channels

Unreliable Channels / Link Failure

Synchronous Timing Model

known upper bound on message delay and node processing delay (aka accurate failure detection)

Any connected graph

calculate the number of nodes (request-response spanning tree construction)

construct a spanning tree, rooted at whoever wants to count the nodes

goal: each node will know its parent and children (such that it's a tree!!)

node X will "child request" all its neighbours

the neighbour will return "YES" or "NO"

a node can only say "YES" to one parent

a node must say "NO" to all other requests

then we just do the good old BFS / DFS on the spanning tree

don't send messages to non-tree edges (if the node replied "NO")

resolve to previous case of known n

each node has an input

want to agree on a result

but: nodes can crash, network links can fail (network failure)

forever waiting for N-1 results

OR node X only sends its results to some of the other nodes, resulting in different conclusions

1. No node or link failures

trivial using all-to-all broadcast

2. Node crash failures; channels that are reliable; synchronous

use (f + 1)-round broadcasting protocol to tolerate f failures

3. No node failures; channels that drop messages (coordinated attack problem)

impossible without error

use randomised algorithm with 1/r error probability

4. Node crash failures; channels that are reliable; asynchronous

impossible, provable using FLP theorem

5. Node byzantine failures; channels that are reliable; synchronous (Byzantine General problem)

if n ≤ 3f, impossible

if n ≥ 4f + 1, (2f + 2)-round protocol

in between is solvable using a more complicated protocol (not covered in CS4231)

either running correctly

or suddenly stop executing anything from then on (no recovery mechanism)

the node goes rogue, can do anything

real world: malicious actors or hardware failure + passes CRC

no messages are dropped

all messages are eventually sent

channels can drop any arbitrary unbounded number of messages

allows for inter-locked rounds (lockstep rounds) -> enables clear progress

every process does some local computation

every process sends one message to every other process



Implementing Rounds with Synchronous Model

Further assume each process has a physical clock with some bounded clock error.

Set the round duration = message_delay + node_processing_delay + physical_clock_error

A message sent in a round must be received by the end of the round.

Each message has a round number attached.

Asynchronous Timing Model

Process delay and message delay are finite but unbounded (no upper bound guarantee).

Thus, impossible to define rounds like synchronous model. No way to tell if the message has failed or just delayed.

In real world, it is always possible to define a synchronous timing model, but you might have to set it to a very large value like 1

minute. Latency would be ridiculous, so asynchronous timing models are used instead.

Version 1: No failures

Trivial. Just broadcast to every other node, take the majority of the results (with tie breaking).

Version 2: Node Crash; Reliable Channels; Synchronous

To tolerate f failures: requires f + 1 rounds of broadcasting!

Theorem: With f crash failures, any consensus protocol will take Ω(f) rounds.

Agreement Proof

With f + 1 rounds and f failures, there is at least one good round.

can be empty to "do nothing"

every process receives one message from every other process

Termination: all nodes (that have not failed) eventually decide

proof: obvious since no waiting (well-defined rounds)

Agreement: all nodes that decide should decide on the same value

including the nodes that would crash after deciding (because its decision can be used)

proof: below

Validity: if all nodes have the same initial input: that value is the only possible decision

to avoid a trivial algorithm

proof: obvious since len(S) == 1

Any deterministic consensus protocol will take at least f + 1 rounds. (proof is beyond CS4231)

Consensus(my_input) {
    S = {my_input}

    // f+1 rounds
    for int i = 1; i <= f+1; i++ {
        send S to all other nodes
        receive n-1 sets
        for each received set T {
            S = S union T
        }
    }

    decide on min(S)
    return decision
}

a node is non-faulty during round r if it has not crashed by the end of round r

a round is good if there is no node failure during the round

after a good round, all non-faulty nodes during this round has the same S

because everything is broadcasted to everything else

after this good round, S on these (currently) non-faulty nodes will never change



Version 3: No Node Crash; Unreliable Channels

(aka Coordinated Attack Problem)

Impossible to achieve the goals with a deterministic algorithm.

Proof:

Goals:

because they have received all the information

therefore, all non-faulty nodes at round f + 1 has the same S, thus same decision

For a deterministic algorithm: two executions are indistinguishable if the nodes see the same things (messages and inputs)

Consider the case where all messages are dropped, if the input is the same, the executions are indistinguishable

Consider this:

A (input = 0, decision = 0), B (input = 0, decision = 0) by validity

A (input = 1, decision = ?), B (input = 0, decision = 0) by indistinguishability, B must decide on 0 if its input is 0

A (input = 1, decision = 0), B (input = 0, decision = 0) by agreement, A must also decide on 0 since B decides on 0

A (input = 1, decision = 0), B (input = 1, decision = ?) by indistinguishability, A must decide on 0 if its input is 1

A (input = 1, decision = 0), B (input = 1, decision = 0) by agreement, B must also decide on 0 since A decides on 0

however, this contradicts with validity

Termination: all nodes (that have not failed) eventually decide

proof: obvious since no waiting (well-defined rounds)

Weakened Agreement: all nodes that decide should decide on the same value with probability of (1 - error_prob)

including the nodes that would crash after deciding (because its decision can be used)

proof: below

Weakened Validity: (assume input of 0 or 1)

if all nodes start with 0: decision should be 0

if all nodes start with 1 and no message is lost throughout the execution, decision should be 1

otherwise, nodes can decide on anything

weakened validity is not sufficient by itself, consider: (requires weakened agreement)

A (input = 1, decision = 1), B (input = 1, decision = 1) by weakened validity with no messages dropped

drop the last message (defined using real clock time)

sender won't know it's dropped, so it must still decide on 1 by indistinguishable

receiver must also decide on 1 by agreement

inductively keep dropping the messages until all messages are dropped

A and B start with 1 and all messages are dropped, and both decide on 1

use the previous argument (with un-weakened validity), but flip 0 and 1



The Randomised Algorithm

Assume two nodes P1 and P2 (can be generalised) and predetermined number of rounds r.

Decision Rule

Non-agreement if L1 < bar < L2, conditions:

In all 3 cases, probability of 1/r that it fails

Version 4: Node Crash; Reliable Channels; Asynchronous

Impossible to solve. Provable using the FLP theorem.

FLP Theorem

FLP = Fischer, Lynch, Paterson (1985)

(in practice, this worst-case scenario would rarely happen and might unblock itself after a while; 2PC and 3PC in DBMS is widely

used, but obviously can't handle this)

In essence, no protocol can accurately detect node failure.

The protocol must still satisfy Agreement, Validity and Termination as previously defined.

Parameters

then, A and B start with 0 and all messages are dropped, and both decide on 1

this is not valid by weakened validity

P1 picks a random integer bar  from 1 to r (inclusive)

hidden from adversary

P1 and P2 maintains an integer level L1  and L2  respectively

L1  and L2  can be influenced by the adversary (depending on messages lost)

but L1  and L2  differ by at most 1

proof by cases

When a message is sent: bar, input and current level is attached.

When receiving a message:

level = other_level + 1

at the end of r rounds, P1 decides on 1 iff

P1 knows P1 and P2 inputs are both 1

and L1 ≥ bar

at the end of r rounds, P2 decides on 1 iff

P2 knows P1 and P2 inputs are both 1

and P2 knows bar

and L2 ≥ bar

both inputs are 1

case 1: P1 decides on 1

L1 = 1, L2 = 0 because P2 never sees any message (fails only if bar == 1)

probability of 1/r

case 2: P2 decide on 1

L1 = 0 because P1 never sees any message, L2 = 1 (fails only if bar == 1)

probability of 1/r

case 3: they see each other, but one decides 0

fails only if max(L1, L2) == bar (but L1 != L2, aka one of them is < r)

probability of 1/r

Goal: works for any possible deterministic protocol

each process has local state and two special variables

input is 0 or 1 ; decision is null or 0 or 1

decision is initially null , and can only change once

messages in the communication channel can be "on-the-fly" (because async)

{(p,m) ∣ message m is on the fly to process p}

all messages are distinct (easy to add on a message-number)

Send operation = add (destination, content) to message system



Does not assume out-of-order or FIFO channels (can implement FIFO using out of order).

Does not assume non-blocking or blocking receives (can implement blocking using non-blocking).

Assumes only one crash failure! (sufficient to break any protocol)

Global State

Note: each step must start with receiving a (possibly null) message. Important because we can serialise events across

processes this way.

Therefore, each step can be fully described by an event (p,m) and the global state G.

An event e can be applied to global state G if m is null or (p,m) is in the system.

Classifications of global state G:

Execution

The execution of any deterministic consensus protocol can be abstracted to an infinite sequence of events. (infinite because

process crash ⟺  finite steps; just do no-op receives after consensus is achieved)

A schedule σ is a sequence of events that capture some execution.

Actual Proof

Technique:

Lemma 1

Lemma 1: For any protocol A, there exists a bivalent initial state.

For n processes: there exists n + 1 initial states (ignoring ordering of processes): (0, 0, . . . , 0), (1, 0, . . . , 0), ... (1, 1, . . . , 1). (all 0; one

1, then all 0; all 1)

Receive (invoked by process p)

Remove (p, content) from the system and return content

or return null (aka no message)

if a message exists, it must be returned after a finite number of receives (because the channel is reliable: unbounded

but finite delay)

Global state: includes all process states (even internal states) + message system

A step in the protocol changes one global state to another

executes the following one one process p

receives a message m (can be null)

based on p's local state and m, send an arbitrary but finite number of messages

based on p's local state and m, change p's local state to some new state

0-valent if 0 is the only possible decision reachable from G

may not have decided on 0, but will eventually decide on 0

1-valent if 1 is the only possible decision reachable from G

univalent if either 0-valent or 1-valent

bivalent if not univalent

FLP theorem proves that there is always some execution that will lead to the protocol not terminating.

σ can be applied to global state G if the events can be applied in order

G′ = σ(G) means apply σ to G to get G′

σ must be able to be applied to G

G2 is reachable from G1 if there is some schedule σ such that G2 = σ(G1)

the adversary (we) is the scheduler can

pick which messages to deliver

which processes will take the next step

don't need to crash any process

but we take advantage of the fact that the protocol must still guard against crash failures

goal: prevent the protocol from deciding by proving that we can keep it in a bivalent state

Assuming no bivalent state exists, there must be two adjacent states S0 and S1 such that S0 is 0-valent, and S1 is 1-valent.

Let process p be the process that differs between S0 and S1. Consider an execution starting from S0 where process p fails

from the start. S0 and S1 are now indistinguishable, so they cannot be "different valent" (i.e. at least one must be bivalent).



Lemma 2

Lemma 2: Let σ1 and σ2 be two schedules such that the set of processes are disjoint. Then, for any G that both σ can be

applied, σ1(σ2(G)) = σ2(σ1(G)).

Proof by induction on k = max(|σ1|, |σ2|); verify both are well-defined

Key idea: start from LHS, inductively swap events until RHS is achieved. Be very careful in the cases.

Lemma 3

Lemma 3: Let G be a global state, and e = (p,m) can be applied to G. Let W  be the set of global states reachable from G

without applying e, then e can be applied to any state in W .

aka e can be delayed, but still be applied

Consider:

Lemma 4

Lemma 4: Let G be a bivalent state, and e = (p,m) is any event that can be applied to G. Let W  be the set of global states

reachable from G without applying e, and V = e(W) to be the set of global states by applying e to the states in W . Then, V

contains a bivalent state.

aka if G is bivalent, we can apply any e to it. but, we delay this e and apply it to some G2 reachable from G. There exists a e(G2)

that is still bivalent. (G = G2 is ok)

Proof: Assume V  does not contain such a G2

Claim 1: There must exist some schedule σ such that σ contains the event e and σ(G) is 0-valent.

Claim 2: There must be a 0-valent state G0 in V .

Claim 3: There must be a 1-valent state G1 in V .

Claim 4: There must be F0 and F1 in W  such that e(F0) = G0 is 0-valent, e(F1) = G1 is 1-valent, and F0 and F1 are neighbours

separated by an event d.

Actual Proof Sketch

Thus, contradiction.

m is null: trivial (always can apply null messages)

m is not null:

m is on the fly in G

thus, it must still be on the fly in any global state in W

G is bivalent, so there must exist some 0-valent G0 reachable from G where G0 = σ1(G).

Consider:

σ1 contains e: we are done

σ1 does not contain e: just append e to σ1 to get σ

From Claim 1: σ(G) is 0-valent

We know e exists in σ. Remove events from the head of σ until the head is e. Let this global state be G0.

Since we claim there are no bivalent states in V , G0 is either 0-valent or 1-valent. It must be 0-valent because we reached a

0-valent state from it.

Symmetric to claim 2

Show such neighbours exist through inductive reasoning

e and d must occur on the same process p, otherwise G1 = e(F1) = e(d(F0)) = d(G0) will have a decision of 0. (by Lemma 2 -

events are swappable if processes are disjoint)

Intuition: the ordering of e and d is entirely responsible for the system deciding on 0 or 1. Force p to be slow such that the

other processes will decide before p executes either e or d.

...

We find that we can reach a 1-valent state after reaching a 0-valent state.

Thus, contradiction

Start with some initial bivalent state (by Lemma 1)

Let processes take steps in round-robin fashion. For some process p's turn:

If the message system contains no message, return null



Version 5: Byzantine Failures; Reliable Channels; Synchronous

Main problem: even if you can detect that some node is faulty, hard to decide which node is faulty

Theorem: If n ≤ 3f, Byzantine consensus problem cannot be solved. (proof outside of CS4231)

The Protocol

otherwise, return the oldest message

let G be the current state

execute (p,m) if e(G) is bivalent

otherwise, find a finite length σ that does not contain e and e(σ(G)) is bivalent (by Lemma 4)

apply σ and e

the system is always bivalent

Termination: all non-faulty nodes eventually decide

proof: trivial because f + 1 rounds

Agreement: all non-faulty nodes should decide on the same value

proof:

at least one phase is deciding

after that deciding phase, all non-faulty processes have the same V [i] (by Lemma 1)

in the following phases, V [i] never changes on the non-faulty processes (by Lemma 2)

Validity: if all non-faulty nodes have the same initial input: that value is the only possible decision

to avoid a trivial algorithm

must ignore Byzantine nodes' inputs because they can ignore / "change" their input

proof: follows from Lemma 1

Every protocol takes turns being the coordinator in rounds

If a coordinator is non-faulty, all processes will see the proposal and achieve consensus

A phase is deciding if the coordinator is non-faulty

Need to ensure that after a deciding phase, the decision doesn't change

// process i, with my_input as input
Consensus(i, my_input) {
    V[1..n] = 0
    V[i] = my_input

    // f+1 phases
    for k = 1; k <= f+1; k++ {
        // all-to-all broadcast
        send V[i] to all processes
        set V[1..n] to the n values received

        if X occurs (> n/2) times in V {
            // majority
            proposal = X
        } else {
            proposal = 0
        }

        // coordinator
        if (k == i) {
            // i am coordinator
            send proposal to all
        } else {
            receive the coordinator's proposal
        }

        // should I listen to coordinator?
        if value y occurs (> n/2 + f) times in V {
            // *overwhelming* majority -> ignore coordinator
            V[i] = y
        } else {



Will always have a majority if n is odd (because the domain is 0 and 1)!

The Protocol Proof

Lemma 1

Lemma 1: if all non-faulty processes Pi have V [i] = y at the beginning of phase k, then this remains true at the end of phase k.

This is true because of the overwhelming majority rule.

Lemma 2

Lemma 2: if the coordinator in phase k is non-faulty, then all non-faulty processes Pi have the same V [i] at the end of phase k.

tl;dr: X is not majority in coordinator => X is not overwhelming majority in any other node

Case 1: coordinator received a value X that is the majority

Case 2: coordinator did not receive a majority (proposal = 0)

Self Stabilisation

Distributed systems can be represented by a graph, but we typically only need a (ideally minimum) spanning tree to know how to

send messages. The actual graph can change over time due to faults: topology changes, failures, reboots. This can cause the

spanning tree to enter an illegal state.

Self Stabilising Spanning Tree Algorithm

Specs:

Algorithm:

Proof

Phase: minimum time period where every process has executed its code at least once ("has taken an action")

            V[i] = coordinator's proposal
        }
    }

    decide on V[i]
}

if a message is not received (because synchronous + reliable):

the sender must be faulty, so just set value to 0 or 1 arbitrarily (doesn't matter because the node is faulty anyways)

n − f > n/2 + f

⟺ n/2 > 2f

⟺ n > 4f (true by definition)

If some value Y is the overwhelming majority, then X == y

because of simple math (X is already at least half, another value cannot also be the majority)

Otherwise, non-faulty nodes will take the coordinator's proposal

No value is the majority => no value is the overwhelming majority

All non-faulty nodes will take the coordinator's proposal

constructs a spanning tree, rooted at a special node

can be used to compute shortest path

runs in the background, constantly updating the variables

will eventually be correct (might be wrong an any point in time)

can be overwhelmed if there are too many failures

each process maintains two variables: parent , dist  (distance to root)

on root node (executed periodically):

sets dist = 0 ; parent = null

on all other nodes (executed periodically):

retrieve dist  from neighbours into neighbour_dists

set dist = min(neighbour_dist) + 1

set parent = neighbour (with smallest dist)  - tie break arbitrarily

^these steps do not need to be executed atomically (arbitrary interleaving is allowed)



(let process 1 be the root)

Lemma:

Inductively prove the following for phase r+1:

(common prove technique for self-stabilising algorithms)

Nodes with already know: phase r want to show: phase r+1

Ai ≤ r − 1 disti = Ai disti = Ai

Ai = r disti ≥ r disti = Ai

Ai ≥ r + 1 disti ≥ r disti ≥ r + 1

A_i  (aka level): actual shortest distance from process i  to root

a node at level x has at least one neighbour in level x − 1

a node at level x only has neighbours in level x − 1, x, x + 1

dist_i : currently known shortest distance from process i  to root

at the end of phase 1, dist_i = 0 , dist_i >= 1  for any i >= 2

at the end of phase r,

any process i where Ai ≤ r − 1 has disti = Ai (actual distance found)

any process i where Ai ≥ r − 1 has disti ≥ r

1. prove that the actions will not roll back what is already achieved by phase r (no regression)

claim: the "already know" conditions hold throughout phase r+1

hold throughout is stronger than holds through at the end!!

proof: prove all cases using neighbour levels being one-away property

2. prove that at some point, each node will achieve more (has progress)

claim: the "want to show" conditions holds through at some point in phase r+1

proof: prove all cases using "action must happen" + "already know" conditions + neighbour-level property

3. prove that no regression happens in this phase for the progress made in this phase

because multiple actions are done in parallel (no serialisation of actions)

claim: for all nodes, after the "want to show" conditions holds through, it must continue to hold through until the end of

phase r+1

proof: simple to show regression is not possible

Theorem 1: After H + 1 phases, dist_i = A_i  on all nodes

where H is max(A_i)

directly from Lemma

Theorem 2: After H + 1 phases, dist  and parent  on all nodes are correct

proof: all nodes (except root) has a single parent pointer => n nodes, n-1 edges; all nodes have a path to root =>

connected; therefore, it is a spanning tree


